
Thesis for the Degree of Licentiate of Philosophy

Towards Development of Safe and

Secure JAVA CARD Applets

Wojciech Mostowski

Department of Computing Science
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, December 2002

Towards Development of Safe and Secure JAVA CARD Applets
Wojciech Mostowski

c© Wojciech Mostowski, 2002

Technical Report no. 16L
ISSN 1651–4963
School of Computer Science and Engineering

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone +46 (0)31–772 1000

Printed at Chalmers, Göteborg, 2002

Abstract

This thesis is concerned with different aspects of JAVA CARD application de-
velopment and use of formal methods in the JAVA CARD world. JAVA CARD is a
technology that provides means to program smart (chip) cards with (a subset
of) the JAVA language. The use of formal methods in the JAVA CARD context
is highly justified due to the criticality of JAVA CARD applications. First of all,
JAVACARD applications are usually security critical (e.g., authentication, elec-
tronic cash), second, they are cost critical (i.e. they are distributed in large
amounts making updates quite difficult) and finally, they can also be legally
critical (e.g., when the digital signature law is considered). Thus the robustness
and correctness of JAVA CARD applications should be enforced by the best means
possible, i.e. by the use of formal verification techniques. At the same time JAVA

CARD seems to be a good target for formal verification—due to the relative sim-
plicity of JAVA CARD applications (as compared to full JAVA), formal verification
becomes a feasible and manageable task. In this thesis, we touch upon different
levels of JAVA CARD application development and the use of formal methods.
We start by defining a UML/OCL supported development process specifically
tailored to JAVA CARD applications, then we go on to define an extension to the
logic used in formal verification of JAVACARD programs to handle so called “rip
out” properties (properties that should be maintained in case of an unexpected
termination of a JAVA CARD program), which are specific to JAVA CARD. Finally,
we end up with a simple tool support for JAVA CARD program compilation and
testing inside a CASE tool. The thesis contains three papers focusing on these
aspects. The main purpose of this work is to ensure the robustness of JAVA

CARD applications by providing a well defined development process and means
to formally verify properties specific to JAVA CARD applications to be able to
develop JAVA CARD applets which are robust “by design”. At the same time we
want to make rigorous JAVA CARD development relatively easy, tool supported
(automated wherever possible) and usable by people that do not have years of
training in formal methods.

i

ii

Contents

Introduction 1
1 Overview . 1
2 The KeY System . 2
3 JAVA CARD . 3
4 Description of the Papers . 7
5 Contribution to the KeY Project 8
6 Related Work . 9
7 Future Work . 10

Paper I: Rigorous Development of JAVA CARD Applications 13
1 Introduction . 13

1.1 JAVACARD . 13
1.2 Analysis of the Current Situation 14
1.3 Related Work . 15
1.4 Our Approach . 16

2 Case Study: pam iButton . 17
3 Design Issues for JAVA CARD Applications 18
4 Developing JAVA CARD Applications 20

4.1 Applet Life States . 21
4.2 Applet Commands . 22
4.3 Command Invocation Protocol 23
4.4 Command Processing . 26
4.5 Formal Specification . 31
4.6 Employing the KeY System 34

5 Conclusions . 34

Paper II: A Program Logic for Handling JAVA CARD’s
Transaction Mechanism 39
1 Introduction . 39
2 Background . 40
3 JAVA CARD Dynamic Logic . 43

3.1 Syntax of JAVA CARD DL 44
3.2 Semantics of JAVA CARD DL 44
3.3 State Updates . 45
3.4 Rules of the Sequent Calculus 45

iii

4 Extension for Handling “Throughout” and Transactions 46
4.1 Additional Sequent Calculus Rules for the [[·]] Modality . 47
4.2 Additional Sequent Calculus Rules for Transactions . . . 48

5 Examples . 52
6 Conclusions and Future Work . 56

Paper III: JAVA CARD Tools for Together Control Center 59
1 Introduction . 59
2 JAVA CARD Platforms Supported 60

2.1 Sun JAVACARD Development Kit 60
2.2 Dallas Semiconductor JAVA Powered iButtons 60

3 Support for JAVA CARD Development 61
3.1 JAVA CARD Patterns . 61
3.2 Installing and Testing Applets 63

4 A Few Words About the Implementation 67
5 Possible Extensions . 67
6 Further Information . 68

iv

Introduction

1 Overview

This thesis is concerned with different aspects of JAVACARD application devel-
opment and use of formal methods in the JAVA CARD world. JAVACARD is a
technology that provides means to program smart (chip) cards with (a subset
of) the JAVA language. The use of formal methods in the JAVA CARD context
is highly justified due to the criticality of JAVACARD applications. First of all,
JAVA CARD applications are usually security critical (e.g. authentication, elec-
tronic cash), second, they are cost critical (i.e. they are distributed in large
amounts making updates quite difficult) and finally, they can also be legally
critical (e.g. when the digital signature law is considered). Thus the robustness
and correctness of JAVA CARD applications should be enforced by the best means
possible, i.e. by the use of formal verification techniques. At the same time JAVA

CARD seems to be a good target for formal verification—due to the relative sim-
plicity of JAVACARD applications (as compared to full JAVA), formal verification
becomes a feasible and manageable task. In this thesis, we touch upon different
levels of JAVA CARD application development and the use of formal methods.
We start by defining a UML/OCL supported development process specifically
tailored to JAVA CARD applications, then we go on to define an extension to the
logic used in formal verification of JAVACARD programs to handle so called “rip
out” properties (properties that should be maintained in case of an unexpected
termination of a JAVA CARD program), which are specific to JAVA CARD. Finally,
we end up with a simple tool support for JAVA CARD program compilation and
testing inside a CASE (Computer Aided Software Engineering) tool. The the-
sis contains three papers focusing on these aspects. The main purpose of this
work is to ensure the robustness of JAVA CARD applications by providing a well
defined development process and means to formally verify properties specific
to JAVA CARD applications to be able to develop JAVA CARD applets which are
robust “by design”. At the same time we want to make rigorous JAVACARD

development relatively easy, tool supported (automated wherever possible) and
usable by people that do not have years of training in formal methods.

1

2 Introduction

All the work presented in this thesis was carried out in the context of the
KeY project [1, 12]. In general the KeY project is concerned with integrating
object oriented design with formal methods and, in particular, with formal ver-
ification of real world object oriented programs (in this case JAVA/JAVA CARD).
The integration of the object oriented design with formal methods is realised as
the KeY system (tool), which is built on top of a commercial CASE tool.

In Section 2 we describe the KeY system, its aims and current state in
more detail. Section 3 gives a brief introduction to JAVA CARD technology and
describes the JAVACARD language in some detail. Section 4 describes the papers
presented in this thesis in more detail and how they fit into this thesis. The
contributions those papers provide to the KeY project are described in Section 5.
Section 6 gives pointers to work related to formal verification of JAVA and JAVA

CARD programs, and finally Section 7 gives some directions for future work.

2 The KeY System

KeY [1, 12] is a tool for the development of high quality object-oriented soft-
ware. The “KeY” idea behind this tool is to provide facilities for formal spec-
ification and verification of programs within a software development platform
supporting contemporary design and implementation methodologies. The KeY
Tool empowers its users to perform formal specification and verification as part
of software development based on the Unified Modelling Language (UML). To
achieve this, the system is realised as an extension of a commercial UML-based
CASE tool. As a consequence, specification and verification can be performed
within the extended CASE tool itself. Such a deep integration of formal spec-
ification and verification into modern software engineering concepts serves two
purposes. First, formal methods and object-oriented development techniques
become applicable in proper combination at all. Second, formal specification
and verification become more accessible to developers who are already using
object-oriented design methodology. Moreover, KeY allows a lightweight usage
of the provided formal techniques, as both specification and verification, can be
performed at any time, and to any desired degree.

The target language of KeY-driven software development is JAVA. More
specifically, the verification facilities of KeY are restricted to code written in
JAVACARD [21, 6]. JAVA CARD is a proper subset of the JAVA programming lan-
guage, excluding certain features (like threads, cloning or dynamic class loading)
and with a much reduced API. The JAVA CARD language [21] and platform [22]
are provided by Sun Microsystems to enable JAVA technology to run on smart
cards and other devices with limited memory, such as embedded systems. Due
to the relative simplicity of the JAVACARD language (compared to full JAVA),
verification of the full JAVA CARD language becomes a feasible task. At the same
time, as already outlined above, the quality of JAVA CARD applications is highly
critical. Thus, choosing JAVACARD language as the target language for verifi-
cation in the KeY system is highly justified. It is important to note here that
the KeY system is not really restricted to be used for the development of smart

3. JAVA CARD 3

card applications, because many JAVA applications do not use features excluded
by JAVA CARD. In the next section we present a short description of JAVA CARD

technology and language.
UML based software development puts emphasis on the activity of designing

the targeted system. It is increasingly accepted that the design stage is very
much where one actually has the power to prevent a system from failing. This
suggests that formal specification and verification should (in different ways) be
closely tied to the design phase, to design documents, and to design tools. One
way of combining object-oriented design and formal specification is to attach
constraints to class diagrams. An appropriate notation for such a purpose is
already offered by the UML: the standard [17] includes the Object Constraint
Language (OCL). We briefly point out the three major roles of OCL constraints
within KeY:

• The KeY Tool supports the creation of constraints. While a user is free
in general to formulate any desired constraint, he or she can also take
advantage of the automatic generation of constraints, a feature which is
realised in the KeY Tool by extending the CASE tool’s design pattern
instantiation mechanism.

• The KeY Tool supports the formal analysis of constraints. The relations
between classes in the design imply relations between corresponding con-
straints, which can be analysed regardless of the implementation.

• The KeY Tool supports the verification of implementations with respect
to the constraints. A theorem prover with interactive and automatic op-
eration modes can check consistency of JAVA implementations with the
given constraints.

Most of the described features of the KeY system are already implemented,
however the system is still under development. The current publicly available
version can be downloaded from KeY project’s webpage [12].

3 JAVA CARD

Here we give a short introduction to JAVACARD technology and language [6, 21,
22] that will shed more light on the papers included in this thesis.

Smart Cards. Smart cards (chip cards) are small computers, providing 8, 16
or 32 bit CPU with clock speeds ranging from 5 up to 40 MHz, ROM memory
between 32 and 64 KB, EEPROM memory (writable, persistent) between 16 and
32 KB and RAM memory (writable, non-persistent) between 1 and 4 KB. The
ROM usually holds the card’s operating system, the EEPROM is used to store
persistent data of the applications residing on a smart card (e.g. electronic cash)
and the RAM is used for temporary calculations. Smart cards communicate
with the rest of the world through application protocol data units (APDUs,

4 Introduction

ISO 7816–4 standard). The communication is done in master-slave mode—it’s
always the master/terminal application that initialises the communication by
sending a command APDU to the card and then the card replies by sending a
response APDU (possibly with empty contents). There is no way for a smart
card to initialise the communication (even though its CPU is active when the
power is up), it can only reply to requests sent by the host system. APDUs
are the only means to communicate with smart cards, which in practice means
that the user of a smart card does not have any direct access to a smart card’s
“internals” (e.g. direct memory access).

JAVA Smart Cards. A smart card can be provided with functionality to run
JAVA programs on it directly. Such cards are usually called JAVA powered cards
(or simply JAVA cards) and the whole technology that provides JAVA functional-
ity to smart cards (including a restricted subset of a JAVA language to program
applets residing on a card) is called JAVACARD. JAVA CARD’s ROM, beside the
operating system, includes a JAVACARD virtual machine which implements the
JAVA CARD language and allows applets to be run on the card.

JAVA CARD Language Restrictions. Most of the JAVACARD language re-
strictions are related to the limited computing resources of smart cards. To start
with, large primitive data types, like int, long, double or float are not avail-
able (although int is available on some JAVA CARD platforms). Also characters,
and thus strings, are excluded from the JAVA CARD language. Furthermore mul-
tidimensional arrays, dynamic class loading, threads (concurrency) and garbage
collection are not available in JAVA CARD (again, garbage collection might be
available on some platforms, but it is not required by the JAVA CARD standard).

Otherwise JAVA CARD is a fully functional JAVA with all object oriented fea-
tures like interfaces, inheritance, virtual methods, overloading, dynamic object
creation and scoping.

JAVA CARD API and Applets. One other aspect where JAVACARD differs
from JAVA is JAVA CARD’s API. The API is specific to the smart card environ-
ment and thus it provides support for handling APDUs, smart card Application
IDentifiers (AIDs), PIN codes and JAVA CARD specific system routines. Most of
the “big” classes of JAVA, like System, String or Vector, are not available in
JAVACARD.

The applications running in a JAVA CARD environment are called JAVACARD

applets. A proper applet should implement the install method responsible
for the initialisation of the applet (one can see it as applet construction) and
a process method for handling incoming command APDUs and sending the
response APDUs back to the host. There can be more than one applet existing
on a single JAVA CARD, but there can be only one active at a time (the active
one is the one most recently selected by JAVACARD run-time environment).

Finally, we present a small example of a JAVA CARD applet to give a feeling
for how the applets work in practice. CounterApplet is an applet that sim-

3. JAVA CARD 5

ply returns the value of an internal counter when requested by the host. The
counter is increased each time the applet is selected (activated) by the JAVA

CARD runtime environment. Here is the code:

import javacard.framework.*;

public class CounterApplet extends Applet {

// CounterApplet APDU command codes

final static byte CounterApplet_CLA = (byte)0xB2;

final static byte GET_SELECT_COUNT = (byte)0x10;

// (persistent) counter variable

private byte counter;

protected CounterApplet() {

// applet initialisation

counter = (byte)0;

register();

}

public static void install(byte[] bArray,

short bOffset, byte bLength) {

new CounterApplet();

}

public void process(APDU apdu) {

byte buffer[] = apdu.getBuffer();

if ((buffer[ISO7816.OFFSET_CLA] == ISO7816.CLA_ISO7816) &&

(buffer[ISO7816.OFFSET_INS] == ISO7816.INS_SELECT)) {

// That was the SELECT APDU

counter++;

}else{

if (buffer[ISO7816.OFFSET_CLA] != CounterApplet_CLA)

ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

if (buffer[ISO7816.OFFSET_INS] != GET_SELECT_COUNT)

ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

// That was the command to return the current value of

// the counter.

// Switch to ’send response’ mode

apdu.setOutgoing();

apdu.setOutgoingLength((short)1);

// Prepare the output buffer

buffer[0] = counter;

// Send the response

apdu.sendBytes((short)0, (short)1);

}

}

}

During the initialisation of the applet (install method) a new instance of

6 Introduction

the applet is created, the counter is set to 0 and the applet is registered with
the JAVA CARD run-time environment. Then the process method takes care of
processing the incoming APDUs. In case it is the select command APDU (the
first if statement) the counter is increased. Otherwise the APDU is checked
again whether it issues a command to return the current value of the counter.
If that’s the case the response is prepared and sent back to the host, otherwise
an exception is thrown, which causes an APDU with a proper status word to
be sent to the host informing that the request could not be handled.

JAVA CARD Object Persistency, Atomicity and Transactions. Notice
that the value of the counter variable is not lost after the card’s session is
finished—all the instance variables of the applet are kept in the persistent (usu-
ally EEPROM) memory and thus their values are preserved when a power loss
occurs. This is specific feature of JAVA CARD not present in JAVA.

When the execution of a JAVACARD applet is interrupted unexpectedly then
all the updates to persistent objects performed so far are maintained. The
atomicity level of the JAVA CARD platform is quite “high”—all the updates to
single variables and object fields are atomic. The user can perform atomic
updates of larger size using the transaction mechanism of JAVA CARD. Inside a
transaction the updates to persistent objects (only) are executed conditionally.
When the transaction is commited, all the conditional updates are executed
in one atomic step. In case the transaction is aborted (either by an abrupt
termination of a program or by a system call) all the conditionally updated
objects are rolled back to the state before the transaction started. Take a look
at the following fragment of JAVACARD code:

counter = 100;

JCSystem.beginTransaction();

counter = i;

counter++;

if(counter > 100)

JCSystem.abortTransaction();

else

JCSystem.commitTransaction();

When the value of the counter inside the transaction goes above 100 the transac-
tion will be aborted—the value of counter will be rolled back to its state before
the transaction started, i.e. it will be 100 again. Otherwise the transaction will
commit successfully and the value of counter will be equal to i+1 after this
piece of the program is executed.

In reality the JAVA CARD transaction mechanism is a bit more complicated
than this simple example shows. See the second paper of this thesis for the full
account.

4. Description of the Papers 7

4 Description of the Papers

In general this thesis contributes to the world of JAVA CARD application develop-
ment and formal verification in three ways. First of all, it defines a development
process for JAVACARD. The development process is based on UML/OCL and is
designed to enable the use of formal verification. Basically two kinds of OCL
specifications are involved in the design process—generated from a UML se-
quence diagram and generated from specification templates (KeY specification
idioms). Then the actual JAVACARD code can be proven correct with respect to
the specification using the KeY interactive prover. Second, we extend the JAVA

CARD Dynamic Logic used in the KeY interactive prover to handle “rip-out”
properties (“strong” invariants)—properties that should be maintained in case
of an unexpected termination of a JAVA CARD program. Finally, we present a
tool set to support handling of the actual JAVACARD devices inside the CASE
tool—compiling, downloading and testing JAVA CARD applets.

In the following we elaborate more on the three papers presented in this
thesis, describe their goals and the relations between them.

Rigorous Development of JAVA CARD Applications

This paper is the starting point to develop a rigorous, well defined development
process for JAVA CARD applications with formal methods support. It’s based on
a real-life case study, which is a system for authenticating users in the Linux
system with JAVA Powered iButtons1 instead of the password mechanism. The
first step was to identify all the problems and deficiencies of the JAVA CARD

applet caused by an unorganised development process and “too relaxed” use of
the JAVA CARD language. Then a development process is proposed, which aims
at overcoming the problems discovered. Among other things, it ensures a well
defined and self-controlled (by the applet itself) message exchange protocol dis-
allowing tampering with the applet, it enforces integrity checks on the incoming
APDU data (wherever necessary) and constrained usage of memory making the
applet “memory safe”. The development process is based on UML and OCL
giving the basis for formal verification with the KeY system. The new devel-
opment process applied to the case study (i.e. the case study was reengineered)
produced a robust, self-controlled, memory safe JAVA CARD applet. Moreover,
most of the actual applet code was derived from UML/OCL specifications.

The paper also describes the problem of a card “rip-out” in some detail.
The problem occurs when the execution of the applet is abruptly terminated
by ripping out the card from the reader (terminal) or simply by power loss. In
such a case the applet’s memory may be left in an undefined state, disabling
the proper functioning of the applet in some cases. To handle this problem one
needs to be able to specify and prove a property that should hold throughout the
whole execution of a JAVACARD program, so that in case of a “rip-out” at any

1“iButtons” are particular JAVACARD devices embedded in a button shaped case, see
http://www.ibutton.com/.

8 Introduction

point the property is maintained. The problem of handling (and in particular
proving) “rip-out” (or throughout) properties is the subject of the next paper.

This paper was presented at the Rigorous Object Oriented Methods Work-
shop in London, March 2002. The paper was later invited for submission to
the Software and Systems Modelling Journal by the workshop organisers and is
currently undergoing the review process.

A Program Logic for Handling JAVA CARD’s
Transaction Mechanism

This paper extends the JAVA CARD Dynamic Logic used in the KeY system’s in-
teractive prover to handle the mentioned “rip-out” properties. The new modal
operator “throughout” is introduced to the logic, which can be used to prove
that a property holds throughout the whole execution of a JAVACARD program
(in all the intermediate steps). The main challenge in this work was to han-
dle JAVA CARD’s transaction mechanism in connection with object persistency
(which is specific to JAVACARD) in the sequent calculus rules. It should be noted
here that transactions and object persistency affect the semantics of “box” (par-
tial correctness) and “diamond” (total correctness) modal operators (specifically
programmatic abortion of a transaction)—the necessary rules to handle trans-
actions for box and diamond operators are also presented in the paper. To our
knowledge none of the published formalisations of JAVA CARD actually handle
transactions and object persistency. The paper also contains examples of simple
proofs using the new rules.

The paper was submitted to the Fundamental Approaches to Software En-
gineering Conference 2003 and is currently undergoing the review process.

JAVA CARD Tools for Together Control Center

This paper is a brief description of a tool set for the Together Control Center
CASE tool that supports development of JAVA CARD applets. In particular, the
tool set provides a uniform environment for compiling, installing and testing
JAVACARD applets inside the CASE tool, independently of the actual JAVA

CARD platform (device) used. This way all vendor specific solutions and user
interfaces for creating and testing JAVA CARD applets are overcome providing
a uniform environment for JAVA CARD applet development with powerful UML
support from the CASE tool.

5 Contribution to the KeY Project

This work contributes to the KeY project in many ways. The first paper provides
a useful, real-life case study—the KeY system was tested in practice on this case-
study, both the modelling capabilities of the CASE tool as well as the verification
capabilities of the KeY extensions were used to reengineer the case study, thus
giving a good test of the whole system. Additionally, the JAVACARD tool set

6. Related Work 9

mentioned in the third paper was used for comfortable testing of the applet
within the KeY system. The first paper also provides the development process,
which can be used in constructing new case studies for the KeY system and also
can serve as a basis for defining a general “KeY development process” (“KeY
method”).

The second paper extends the JAVACARD Dynamic Logic used in KeY’s
interactive theorem prover. We already argued about the importance of treat-
ing the “rip-out” problem for JAVACARD. The extension of the logic with the
“throughout” operator and transaction handling enhances the functionality of
the KeY system to treat the “rip-out” properties. Additionally the transaction
handling “completes” the logic to handle full JAVA CARD. Also, introducing the
“throughout” operator can be treated as a first step to introduce other tempo-
ral operators to the logic. Such temporal operators can be used to specify and
prove correctness of non-terminating programs (e.g. control software).

Finally, the JAVA CARD tool set described in the third paper completes the
KeY system with the possibility to access and operate JAVA CARD devices from
within the KeY system. This makes the KeY system an integrated platform
for the development of JAVA CARD applications: modelling, coding, verifying,
installing and testing JAVA CARD applets.

6 Related Work

Here we present some work that is closely as well as generally related to the mate-
rial presented in this thesis. We start with projects related to JAVACARD as such.
The largest project dedicated to JAVA CARD is the VerifiCard project [25, 9, 3]
together with the LOOP project [14]. The VerifiCard project aims at providing
the basic technology for verification of the JAVACARD platform (virtual machine)
and JAVA CARD applications with the emphasis on the byte-code level verifica-
tion, while the LOOP project concentrates on the source code verification of
JAVACARD programs annotated with JAVA Modelling Language (JML) [11] (see
e.g. [24, 16]). GemPlus (a major producer of JAVA smart cards) carries out some
work towards automated testing of JAVA CARD applications [15].

Next we would like to mention some approaches that provide formalisations
of JAVA semantics and proof systems targeted at JAVA. To start with, [8] con-
tains an overview of the existing literature on JAVA and JAVA CARD safety with
emphasis on formal approaches. The mentioned approaches include the follow-
ing:

• [18] presents a Hoare style programming logic for sequential JAVA. This
work is related to the VerifiCard project.

• [10, 23] present an approach to formal verification of sequential JAVA pro-
grams using a Hoare like logic formalised in Type Theory. The machine
assisted proving is done using PVS. This work is related to the LOOP
project.

10 Introduction

• [19] gives a formalisation of JAVA using Abstract State Machines.

• Finally, Compaq’s ESC/JAVA project [13, 7] develops a tool for automatic,
static checking of JAVA programs annotated with specifications written in
(a subset of) JML.

Last, but not least, we should mention the KeY system’s formalisation of JAVA/
JAVA CARD—JAVACARD Dynamic Logic [4, 5], which is heavily explored in the
second paper of this thesis. It is an extension of Dynamic Logic to handle
sequential JAVA and, in particular, JAVA CARD.

Dynamic Logic was also used in the KIV system to prove correctness of im-
perative programs [2]. More recently, the KIV system supports also a fragment
of the JAVA language [20].

7 Future Work

The work presented in this thesis can be continued in a number of ways:

• The JAVA CARD Dynamic Logic rules for the “throughout” operator and
transaction mechanism presented in the second paper should be imple-
mented in the KeY system’s interactive prover and then tried with real
(extensive and meaningful) examples. Another possible direction here is to
formally prove the soundness and completeness of these rules. Such work
(using Isabelle) for the unextended JAVACARD Dynamic Logic has been
already tried and could possibly be adapted to include the “throughout”
and transactions extensions.

• Security properties and security related design patterns could be stud-
ied in the context of the first paper, i.e. the development process could
be extended to focus on the security of JAVA CARD applications via the
use of security related idioms and design patterns adapted to JAVA CARD

environment.

• The work from the first paper could be generalised to the broader aspect of
using JAVA with the small devices, i.e. a similar, more general development
process could be considered for JAVA2 Micro Edition applications. This
would involve developing a meaningful (real life) J2ME application for a
case study.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The
KeY system: Integrating object-oriented design and formal methods. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental Approaches
to Software Engineering (FASE), Part of Joint European Conferences on

References 11

Theory and Practice of Software, ETAPS, Grenoble, volume 2306 of LNCS,
pages 327–330. Springer-Verlag, 2002.

[2] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In T. Maibaum, editor, Fundamental Ap-
proaches to Software Engineering, volume 1783 of LNCS. Springer-Verlag,
2000.

[3] Gilles Barthe, Simao Sousa, Guillaume Dufay, and Marieke Huisman.
Jakarta: A toolset for reasoning about JAVA CARD. In Smart Card Pro-
gramming and Security, International Conference on Research in Smart
Cards, e-Smart 2001, Cannes, France. Springer-Verlag, September 2001.

[4] Bernhard Beckert. A dynamic logic for the formal verification of JAVA

CARD programs. In I. Attali and T. Jensen, editors, JAVA on Smart Cards:
Programming and Security. Revised Papers, JAVACARD 2000, International
Workshop, Cannes, France, LNCS 2041, pages 6–24. Springer, 2001.

[5] Bernhard Beckert and Bettina Sasse. Handling JAVA’s abrupt termina-
tion in a sequent calculus for Dynamic Logic. In B. Beckert, R. France,
R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR Workshop on Pre-
cise Modelling and Deduction for Object-oriented Software Development,
Siena, Italy, pages 5–14. Technical Report DII 07/01, Dipartimento di In-
gegneria dell’Informazione, Università degli Studi di Siena, 2001.

[6] Zhiqun Chen. JAVACARD Technology for Smart Cards: Architecture and
Programmer’s Guide. JAVA Series. Addison-Wesley, June 2000.

[7] ESC/JAVA homepage. http://www.research.compaq.com/SRC/esc/.

[8] Pieter H. Hartel and Luc Moreau. Formalizing the safety of JAVA, the JAVA

virtual machine, and JAVACARD. ACM Computing Surveys, 33(4):517–558,
December 2001.

[9] B. Jacobs, H. Meijer, and E. Poll. VerifiCard: A european project for smart
card verification. Newsletter 5 of the Dutch Association for Theoretical
Computer Science (NVTI), 2001.

[10] Bart Jacobs and Erik Poll. A logic for the JAVA modelling language. In
H. Hussmann, editor, 4th Fundamental Approaches to Software Engineer-
ing, Genova, Italy, volume 2029 of LNCS, pages 284–299. Springer-Verlag,
April 2001.

[11] JAVA Modelling Language homepage. http://www.cs.iastate.edu/
~leavens/JML.html.

[12] KeY project homepage. http://i12www.ira.uka.de/~projekt/.

[13] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking JAVA programs via
guarded commands. Technical report, Compaq Systems Research Center,
Palo Alto, California, 1999.

12 Introduction

[14] The LOOP project homepage. http://www.cs.kun.nl/~bart/LOOP.

[15] H. Martin and L. du Bousquet. Tools for automated conformance testing
of JAVA CARD applets. Technical report, Gemplus, September 2000.

[16] Hans Meijer and Erik Poll. Towards a full formal specification of the
JAVACARD API. In Smart Card Programming and Security, International
Conference on Research in Smart Cards, e-Smart 2001, Cannes, France.
Springer-Verlag, September 2001.

[17] Object Modeling Group. Unified Modelling Language Specification, version
1.4, September 2001.

[18] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequen-
tial JAVA. In S. D. Swierstra, editor, Programming Languages and Systems
(ESOP ’99), volume 1576 of Lecture Notes in Computer Science, pages
162–176. Springer-Verlag, 1999.

[19] Robert F. Stärk, Joachim Schmid, and Egon Börger. JAVA and the JAVA

Virtual Machine: Definition, Verification, Validation. Springer-Verlag,
2001.

[20] Kurt Stenzel. Verification of JAVA CARD programs. Technical report 2001–
5, Institut für Informatik, Universität Augsburg, Germany, 2001. Available
at http://www.Informatik.Uni-Augsburg.DE/swt/fmg/papers/.

[21] Sun Microsystems, Inc., Palo Alto/CA. JAVACARD 2.0 Language Subset
and Virtual Machine Specification, October 1997.

[22] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVACARD 2.2 Platform
Specification, September 2002.

[23] Joachim van den Berg, Marieke Huisman, Bart Jacobs, and Erik Poll. A
type-theoretic memory model for verification of sequential JAVA programs.
In D. Bert and C. Choppy, editors, Recent Trends in Algebraic Development
Techniques, volume 1827 of LNCS, pages 1–21. Springer-Verlag, 2000.

[24] Joachim van den Berg, Bart Jacobs, and Erik Poll. Formal Specification
and Verification of JAVACARD’s Application Identifier Class. In I. Attali
and Th. Jensen, editors, JAVA on Smart Cards: Programming and Security,
volume 2041 of LNCS, pages 137–150. Springer-Verlag, 2001.

[25] VerifiCard project homepage. http://verificard.org/.

Rigorous Development of JAVA CARD Applications

Wojciech Mostowski

Abstract

We present an approach to rigorous, tool supported design and de-
velopment of JAVACARD applications. We employ the Unified Modelling
Language (UML) and formal methods for object oriented software devel-
opment in our approach. Our goal is to make JAVACARD applications
robust “by design”, to make the development process independent of the
JAVACARD platform used and to enable applications to be verified by the
KeY system. First we analyse the current situation of JAVACARD appli-
cation development, then we present a real life JAVACARD case study and
describe the problems we found that should be addressed by rigorous de-
velopment. Finally we propose some solutions to selected problems by
using UML specifications, software design patterns, formal specifications
and modern CASE tool support.

1 Introduction

In this paper we present an approach to rigorous, tool supported design and
development of JAVA CARD applications. Our goal is to make JAVA CARD ap-
plications robust “by design”, to make the development process independent
of the JAVACARD platform used and to enable applications to be formally ver-
ified by the KeY system [1]. First we analyse the current situation of JAVA

CARD application development, then we present a real life JAVA CARD case study
(pam iButton [7]) and describe the problems we found that should be addressed
by rigorous development and formal verification. We propose solutions to se-
lected problems by presenting a framework that incorporates the use of UML
[15] specifications, software idioms and design patterns, formal specifications
and a modern CASE tool support to provide a systematic, rigorous develop-
ment process for JAVACARD applications.

1.1 JAVA CARD

We start with a short introduction to JAVACARD technology [8]. JAVA CARD

provides means of programming smart cards with (a subset of) the JAVA pro-
gramming language. Today’s smart cards are small computers, providing 8, 16
or 32 bit CPU with clock speeds ranging from 5 up to 40 MHz, ROM memory
between 32 and 64 KB, EEPROM memory (writable, persistent) between 16

13

14 Wojciech Mostowski

and 32KB and RAM memory (writable, non-persistent) between 1 and 4 KB.
Smart cards communicate with the rest of the world through application proto-
col data units (APDUs, ISO 7816–4 standard). The communication is done in
master-slave mode—it’s always the master/terminal application that initialises
the communication by sending the command APDU to the card and then the
card replies by sending a response APDU (possibly with empty contents). In
case of JAVA powered smart cards (JAVA CARDs) besides the operating system
the card’s ROM contains a JAVA CARD virtual machine which implements a sub-
set of the JAVA programming language and allows running JAVA CARD applets
on the card. The following are the features not supported by the JAVA CARD

language compared to full JAVA: large primitive data types (int, long, double,
float), characters and strings, multidimensional arrays, dynamic class loading,
threads and garbage collection. Some of the actual JAVA CARD devices go be-
yond those limitations and support for example the int data type and garbage
collection. Most of the remaining JAVA features, in particular object oriented
ones like interfaces, inheritance, virtual methods, overloading, dynamic object
creation, are supported by the JAVACARD language. The card also contains the
standard JAVA CARD API, which provides support for handling APDUs, Appli-
cation IDentifiers (AIDs), JAVA CARD specific system routines, PIN codes, etc.
A proper JAVACARD applet should implement the install method responsible
for the initialisation of the applet (usually it just calls the applet constructor)
and a process method for handling incoming command APDUs and sending the
response APDUs back to the host. There can be more than one applet existing
on a single JAVA CARD, but there can be only one active at a time (the active
one is the one most recently selected by JAVA CARD run-time environment).

1.2 Analysis of the Current Situation

JAVACARD technology is relatively young and still developing and so are de-
sign and development techniques for JAVA CARD applications. Although JAVA

CARD language is based on full JAVA the nature of the JAVACARD environment
(e.g. constrained memory, no garbage collection) makes JAVA CARD program-
ming very different from normal JAVA programming. Powerful development and
modelling tools for JAVA are not JAVA CARD “aware”. Such a JAVA tool can
become helpful provided it can be customised to JAVA CARD needs. This how-
ever is not the common approach being taken. Instead, each JAVACARD vendor
provides its own development environment and proposes its own JAVACARD

specific solutions. The provided tools try to ease the actual process of writing
JAVACARD programs, installing them to the card and testing, but they hardly
ever provide the support for the design of JAVA CARD applications in a more
abstract sense. Our experience is based on using the JAVA-powered iButtons
(http://www.ibutton.com/), which we use in our research, and the develop-
ment environment (iB-IDE—http://www.ibutton.com/iB-IDE/) provided for
this platform, but most of the following statements apply to other environments
too. The iB-IDE tool provides the following functionality: automatic creation
of the skeleton code for both the card (iButton) application and Open Card

Rigorous Development of JAVA CARD Applications 15

Framework [16] compliant JAVA host application with convenience methods for
dispatching user defined command APDUs and converting data types, debug-
ging tools with the possibility of running the card applet in an emulated envi-
ronment and finally a very handy APDU sender which is used to communicate
with the card applets without a host application and to provide some card ad-
ministration services—downloading applets to the card, erasing card’s memory,
etc. The tool however does not provide any kind of modelling or design support
for building JAVACARD applications, nor does it provide any support for formal
specification and verification. One more thing which should be mentioned here
is the fact that the JAVA CARD virtual machine in iButton devices implements
garbage collection and the iB-IDE skeleton code and example applets make
heavy use of that fact which means that those solutions are not (easily) portable
to other JAVACARD platforms. In contrast to this, SUN’s JAVACARD reference
development kit (http://java.sun.com/products/javacard/) provides very
nice examples which take into account common JAVA CARD limitations and pro-
poses a very elegant way of writing JAVA CARD applets, but the development
kit itself does not contain any user friendly tools to create the applications, the
only thing available are command line tools for compilation and running the
applets in a simulated/emulated environment.

The next issue we want to discuss is the need for the use of formal methods
in JAVA CARD application development. There are two reasons for this. First
of all smart card application are usually security critical, secondly, in contrast
to normal computer software, making updates on the cards distributed in large
numbers is not possible, thus correctness of the card application should be
ensured by best means possible. At the same time JAVA CARD applications
seem to be suitable for formal verification because they are small in size and
the JAVA CARD programming language lacks some of the complications of the
full JAVA language that make formal verification difficult (like threads, graphical
user interfaces, complex data types). Finally a controlled software development
process in general (like the one we want to propose or an industrial one, like the
Nokia OK process) will benefit from adding the formal methods support to it.

Taking all this into account it becomes clear that the development of JAVA

CARD applications needs to be done in a controlled, systematic, well defined,
rigorous way giving the possibility to formally verify the application’s properties.

1.3 Related Work

We briefly discuss some other work that is done in the areas around JAVA and
JAVACARD program development and verification. The largest project con-
cerned with the use of formal methods for JAVA CARD is the VerifiCard project
[20, 10, 3]. Its goal is to provide the basic technology for verification of both
the JAVACARD platform and JAVA CARD applications. The project does not
concentrate so much on the actual design process of JAVA CARD applications.
Trusted Logic [19] provides tools for the verification of JAVACARD byte-code
(on-card byte-code verifier). GemPlus (a major producer of JAVA smart cards)
carries out some work towards automated testing of JAVA CARD applications

16 Wojciech Mostowski

[13]. The Open Card organisation [16] bundles efforts to create a common and
unified programming framework for writing host/terminal applications for JAVA

CARD devices coming from different manufacturers (Open Card Framework).
Compaq’s ESC/JAVA project [9] develops a tool for automatic, static checking
of JAVA programs annotated with specifications written in (a subset of) JAVA

Modelling Language. Finally [11] shows how UML can be used to express secu-
rity requirements during system development.

1.4 Our Approach

In our approach to development of JAVA CARD applications we use UML mod-
elling techniques, software patterns and incorporate formal methods in an incre-
mental way. By incremental we mean that the use of formal methods should be
optional and it should be up to the developer (who might be unfamiliar with for-
mal methods) at which level of detail formal methods are used, a view stressed
in [1, 6]. To enable and ease the usage of formal methods we try to provide
means of creating certain kinds of formal specifications semi automatically in
two ways. The first by applying software and specification patterns solving some
common problem to the application design [2]. Such patterns usually need to be
provided with parameters during instantiation to create a proper specification,
but giving the parameters is the only job that is required from the developer.
The second way is to create a specification out of certain kinds of UML dia-
grams (possibly taking some parameters from the user). Both enable creating
partial specifications without detailed knowledge about the formal specification
language. The created specifications are well formed by design and ready to be
formally verified.

Having all this support we can make JAVACARD applications robust and se-
cure by design and easier for verification. For successful verification one needs a
suitable formal verification system, and this is where we turn to the KeY project
[1, 12] which we use as our framework. The KeY project is concerned with in-
tegrating formal methods and object oriented software design. It incorporates
both into one framework by extending a commercial UML CASE tool with for-
mal verification modules in a seamless way. The KeY project focuses on JAVA

source code verification (as opposed to byte code verification) and the usage
of the formal verification extensions is fully integrated into the tool. The KeY
project also proposes the usage of a set of standard specifications that can be
applied to common problems. We will use some of those specification patterns
in our approach. In order to achieve our goals we also need support from a
modern, fully customisable UML CASE tool. The one we use is Together Con-
trol Center from TogetherSoft (http://www.togethersoft.com/). It provides
very good support for UML and a JAVA open API, by which most of the tool
features can be accessed and extended, which makes it extremely suitable for
our purposes. Since it is the same tool the KeY project uses it is easy to inte-
grate our solutions into the KeY system. Another reason to use an independent
CASE tool is that we want to make our solutions to JAVACARD design issues
independent of the actual JAVA CARD platform and vendor specific development

Rigorous Development of JAVA CARD Applications 17

environment obtaining generic, powerful UML support at the same time. It also
should be mentioned that at this point of our work we limit ourselves to the card
applications (JAVA CARD applets). At this stage we don’t consider the problems
of developing the host application, however, we will address this problem in
future.

In this paper we present a motivating JAVA CARD case study (Section 2) based
on which we identify JAVA CARD specific design issues and problems we want to
tackle (Section 3). In Section 4 we present our framework to solve some of the
problems: first we show how UML state chart diagram can be used to define a
JAVA CARD applet behaviour and command invocation protocol, then we show
how the actual implementation is derived from the diagrams in a rigorous way.
Next we show how formal specifications are used to assure extra reliability and
enable formal verification of a JAVA CARD application. We also give an example
of how the KeY system is used to construct specifications. Finally, Section 5
summarises the paper.

2 Case Study: pam iButton

It is time to present our case study, upon which we build up some of the common
design requirements for JAVA CARD applications. The pam iButton package was
written by Dierk Bolten and is available free of charge [7]. The package allows
a Linux user to authenticate himself to the system by inserting an iButton de-
vice into the reader instead of giving the password. A JAVA-powered iButton
is a JAVA CARD device implementing JAVA CARD API version 2.0 (which differs
substantially from the current JAVA CARD API 2.1.1 specification and the up-
coming 2.2) with int data type support and garbage collection. The most recent
JAVA-powered iButton has an 8 bit processor, cryptographic (RSA and SHA1)
coprocessor and 130 KB of non-volatile RAM memory. The pam iButton pack-
age consists of a PAM (Pluggable Authentication Module) Linux system library
which is responsible for authentication on the system side, a setup utility to
configure the necessary system files and administrate the iButton and the JAVA

CARD applet (Safe Applet) which performs the actual authentication on the
iButton device.

The following is an example pam iButton usage scenario. First a Linux user
account needs to be setup to be able to use the iButton authentication. The
user is assigned a unique user ID number and a pair of private and public RSA
keys is generated on the iButton and stored together with the user ID in the
iButton’s memory (many different users can be registered on one iButton). The
public key is then retrieved by the system from the iButton and stored in the
system configuration file together with user’s ID number. The iButton is ready
to be used for authentication. When the user wants to be authenticated he
types in his login name. The system looks up his ID number and encrypts a
random message with the user’s public key. The encrypted message and the
user’s ID number is sent to the iButton applet. The applet checks if the user is
registered and if so, it decrypts the message with the private key, computes the

18 Wojciech Mostowski

SHA1 hash value from the decrypted message and sends it back to the system.
The system compares the received SHA1 value with its own and if they match
the user is authenticated successfully.

We now give some more details about Safe Applet. Here is the list of
the most important and interesting command APDUs that the original applet
accepts:

• Store data—stores temporary data for a subsequent command.

• Authenticate user—given the user ID performs the challenge-response au-
thentication described earlier. In response sends back the SHA1 code of
the message. The encrypted message has to be sent beforehand with the
‘store data’ command.

• Set PIN code (PIN code protected)—sets a new PIN code for PIN pro-
tected commands.

• Generate key pair (PIN code protected)—given the user ID generates an
RSA key pair (the generation is done on the card) and stores it together
with user ID in the applet’s memory. In response sends back the public
part of the key.

• Get public key—given the user ID sends back the public part of the key.

• Delete key pair (PIN code protected)—given user’s ID removes this user’s
key pair entry from applet’s memory.

• Get key information—sends back the ID numbers of users registered in
the applet.

A command (except for the first and the last) sent to the applet can cause
an error condition in which case instead of the expected answer the error code
(status word) is sent back to the host indicating what the error was caused
by. Internally in the JAVA CARD applet this is done by throwing an appropriate
exception (ISOException).

3 Design Issues for JAVA CARD Applications

In the following section we will describe what issues came up while we were
studying the example and we will try to list some common requirements that a
JAVA CARD application should satisfy.

One of the first questions that came to mind was the following. Who is the
owner of the applet PIN code, Linux system administrator or the user? Who
is the person to setup iButton for authentication, the system administrator,
the user, both? What are the applet deployment steps, who’s responsible for
installing the applet to iButton, when is iButton ready to be passed to the user
for regular usage (that is when does the applet get personalised)? Should it
be possible for one iButton applet to be used on two different Linux systems?

Rigorous Development of JAVA CARD Applications 19

Answers to some of the questions imply answers to some of the other questions,
e.g. if a single applet can be used on many different systems then it certainly
should be a user owning the applet’s PIN code and it should be a user that sets
up the system configuration, probably through some administrator privileged
system tool, which itself needs to be very carefully designed.

One way or the other, the answers to the posed questions are not provided by
the design of the applet, at least not explicitly, and since this kind of application
is security critical, things like those mentioned above need to be well defined
and carefully thought through.

Secondly, we took a closer look at the protocol that is used to exchange infor-
mation between the host application and the iButton applet and we discovered
the following. There is no order imposed on command sequences: in one possi-
ble type error attack scenario first the ‘store temporary data’ command is sent
to the applet with an intention for this data to be used with a given subsequent
command call (say ‘authenticate user’), but then a different command is sent
which also relies on ‘store temporary data‘, in which case the latter gets wrong
data (e.g. intended for ‘authenticate user’), which may cause corruption of the
applet data. We only mentioned the ‘authenticate user’ command that relies on
‘store temporary data’, but there are other commands doing this too. In case of
this particular applet we did not find a sequence of command calls that could
put the applet in an unrecoverable state, but it is definitely possible to corrupt
the applet state with wrong data, causing some (recoverable) malfunctioning.
There are also no integrity checks on the data being sent along, which connects
to the previous as well as the next problem. Some of the commands may require
input that does not fit into a single APDU, so there are multiple APDUs being
sent, but there is no control whether the proper number of APDUs in a proper
order is sent (in particular this may cause the applet to run out of memory).
The last thing we found strange about the protocol is that the PIN code is
sent along with each command that requires PIN code authentication. Gener-
ally there is nothing wrong with it, but it produces overhead and it is different
from the commonly established solution of presenting the PIN code once per
command exchange (card) session.

Another thing which we find problematic (and it applies to iButton applets
in general, not only the one presented) is the unconstrained memory usage. The
iButton applets make heavy use of garbage collection and do a lot of dynamic
memory allocation. Not watching for memory usage makes life much easier for
the developer, but it also makes the applet much less robust—it may decline
proper functioning at any point of execution where memory allocation occurs
when there is no free memory on the device left (and this is very likely to
happen on such a memory constrained device). Such an approach to JAVA

CARD programming also makes the applications not portable to other JAVA

CARD devices that don’t support garbage collection.
While testing Safe Applet we came to another interesting issue. If the user

rips out the iButton from the reader during authentication the applet is not
functioning properly any more during subsequent authentication sessions. At
first it seemed to be a simple programming mistake, but it turned out not to

20 Wojciech Mostowski

be. We strongly suspect the JAVA CARD run-time environment to be the source
of the problem. However the point here to make is that the design of a JAVA

CARD application should take similar possibilities into account and try to make
the applets as robust and rip-out proof as possible, assuming of course that the
underlying JAVA CARD run-time environment is implemented properly.

The last thing we want to point out is that Safe Applet allows two different
key pairs registered with the same user ID number. While this is the author’s
deliberate design decision, we think it should be forbidden by the applet to make
double entries of this kind, instead of making the user responsible for controlling
the state of the key pair entries in the applet.

Some of the problems we mentioned may seem not to be an issue for such a
small application as Safe Applet, but we want to make the JAVACARD design
and development process scalable, and for bigger applications the problems
raised here definitely become serious issues which need to be addressed. Based
on what we have already described we now list some of the common design
issues in JAVA CARD development we will try to face and give some support to
in the next section:

• the applet has to be robust in the sense that it should be protected against
malicious host application, tampering with and against ripping out the
card from the reader,

• the applet deployment steps and applet’s life cycle should be well defined
and controlled by the applet itself disabling improper applet usage,

• the message exchange protocol should be well defined, constrained and
controlled by the applet to disable illegal command invocation sequences
(this also includes proper support for the commands requiring data to be
sent in multiple APDUs),

• the applets should be very careful about the memory (to say the least),
here we would like to take the safest approach of allocating all the memory
an applet may ever want to use during applet installation time [8].

To end this section we want to make an important note. In our work we don’t
want to impose certain ways of solving design problems for JAVA CARD applica-
tions (e.g. what actual deployment steps the applet should have or whether a
certain command should be PIN code protected or not), we only want to sup-
port the design process and provide the developer with means and tools to make
those design decisions and control the development process in a rigorous way.
The design decisions we present in the next section are only examples among
many possible, the design decisions in real-life JAVA CARD world should be done
by a domain expert.

4 Developing JAVA CARD Applications

We now present how one can go about designing and developing a JAVA CARD

application by going through the case study again and reengineering it, this

Rigorous Development of JAVA CARD Applications 21

time doing things in a more defined way. We will also point to places where
CASE and verification tools play an important role. We will not develop the
whole Safe Applet here, only the things important to exemplify our approach.

4.1 Applet Life States

First we define the life states of the applet (deployment steps). These are the
distinguished states that the applet will go through during its life time. For our
application we can limit ourselves to the following:

• applet is selectable, this is the state of the applet just after installing
(downloading) it to the card, but before setting some data in the applet
that is necessary for proper functioning of the applet,

• applet is personalised, this is the state after setting the data on the applet.
This is also the applet’s “normal operation” state,

• applet is locked, this is the state after something went wrong during normal
applet usage, e.g. the user entered the wrong PIN code a number of times
and the applet access is blocked temporarily,

• applet is dead, this is the state after an unrecoverable misusage of the ap-
plet, in our case when the user enters a wrong master PIN code, which can
only be presented for verification once and is only allowed to be presented
in locked state.

Applet Selectable

Applet Personalised Applet Locked

Applet Dead
install applet

Figure 1: Safe Applet life states

An applet goes only once through the selectable state during its life and also it
can never leave the dead state after entering it. It can however move between
personalised and locked states many times during its life time. We will show later
what are the exact conditions that cause an applet’s life state change. One last
thing that we will require from the applet is that it enforces the card terminal
session to be restarted after the applet has moved from one life state to another.
Figure 1 shows a UML state diagram presenting the life states idea we have just
described.

22 Wojciech Mostowski

Name/State Selectable Personalised Locked Dead
authenticateUser No Yes No No
updateUserPIN Yes Yes (PIN) Yes (Master PIN) No
setMasterPIN Yes No No No
verifyUserPIN No Yes No No
verifyMasterPIN No No Yes No
generateKeyPair No Yes (PIN) No No
deleteKeyPair No Yes (PIN) No No
getPublicKey No Yes No No
disableUser No Yes (PIN) No No
enableUser No Yes (PIN) No No
getKeysInfo No Yes No No

Table 1: Possible Safe Applet commands

4.2 Applet Commands

We are now at the point where we can start defining the command APDUs
that the applet should support. The commands presented here are slightly
different from the original ones described in Section 2. This is because the new
set of commands is intended to avoid some of the problems described earlier
(e.g. unnecessary PIN code sending, see verifyUserPIN below). For each of the
commands we give its name, we say if it can be invoked in a given applet life
state and if it is a user or master PIN code protected command (for each state
separately). Table 1 shows the list of commands we are interested in. Without
specifying formally what are a given command’s parameters and responses we
now give an informal description of the intended meaning of the commands:

authenticateUser This command is used to authenticate a given user through a
challenge-response protocol. A single person owns one JAVA CARD device
with a single Safe Applet, however there can be more than one system
user registered in the applet. Hence the command has to specify, by giving
a user ID, which user is to be authenticated.

updateUserPIN This command changes the user’s PIN code to a new one.
Depending in which life state the applet is, different security measures are
taken to protect the command. For example, since the personalisation step
should be done in the issuer’s trusted area it is not necessary to require
PIN authentication for updating the user PIN in selectable state.

setMasterPIN This command sets the master PIN for the applet. It’s the only
command required to make the applet personalised, hence after successful
invocation it should move the applet from state selectable to personalised.

verifyUserPIN This command performs the verification of the user PIN which
after successful verification stays validated until the end of the terminal

Rigorous Development of JAVA CARD Applications 23

session. All the commands that are PIN code protected can check the PIN
code validity flag.

verifyMasterPIN Same as previous one, just for the master PIN. This command
can only be invoked in the locked state to enable special behaviour to
unlock the applet. Usually the master PIN is only allowed to be presented
once, after an unsuccessful try the applet becomes dead.

generateKeyPair This command generates a pair of keys (public and private
one) for a given user ID and stores this information in the applet’s memory
for future use.

deleteKeyPair This command removes the information about the keys for a
given user ID from applet’s memory.

getPublicKey This command retrieves the public part of a key for a given user
ID.

disableUser, enableUser Those commands are used to disable and enable the
authentication of a given user specified by a user ID. The user may wish
to block the usage of Safe Applet when he has to pass the JAVA CARD

device (iButton) to somebody else (e.g. in order to download some other
applets).

getKeysInfo This command should inform the owner of the applet about all
user IDs registered in it (for administrative purposes).

The commands that can be invoked during the operational mode of the applet
(personalised) fall into certain categories, which in turn define possible sequences
of command invocations. For example authenticateUser is (the only) application
command that is going to be used on a daily basis, while updateUserPIN is a
user administration command, which is invoked rarely (if ever) and should not
be mixed with application mode commands. Commands like generateKeyPair or
getPublicKey fall into system administration category.

4.3 Command Invocation Protocol

The information we gathered so far is sufficient to define the protocol that
Safe Applet should follow. We do this by presenting further state charts, one
inside each state representing a single applet life state. We will call the new
substates the command states. In our application we distinguish four different
command states. The initial one is the selected state. This is after the applet
is selected by the JAVACARD run time environment (this is usually triggered by
host application). Then, depending on the commands invoked, the applet can
be in one of the three command states: application, user administration or system
administration.

Both in selectable and locked life states the command states selected and
user administration are in some sense equivalent and we put them together as

24 Wojciech Mostowski

Applet Selectable

Selected/User Administration
Applet Personalised

install applet

select applet

deselect, cardReset

setMasterPIN[successfull]

updateUserPIN, setMasterPIN

Figure 2: Command states in the selectable life state

one state. At this stage we also define precisely under what conditions the
applet changes its life state.

Let us start with the selectable life state. Figure 2 shows the corresponding
state chart diagram. The black dot represents the state in which the applet is
not active and needs to be selected. When the applet gets deselected by the
JAVA CARD run-time environment or a card reset event occurs the applet has
to be selected again. There is only one command state inside the life state
selectable and only two commands possible. The invocation of updateUserPIN
is optional during the personalisation process—the applet issuer may wish to
release the applet without user PIN code set. Once setMasterPIN is invoked
successfully (no error occurs and the input data for setting the master PIN is
not corrupted) the applet changes its life state to personalised and never goes
back to selectable. The card/terminal session has to be restarted after a life
state change, which means that no further commands can be invoked after a
successful setMasterPIN until the applet is selected again.

Applet Locked

Applet Personalised

SelectedApplication

User Administration

System Administration

enableUser, disableUser,

getKeysInfo, getPublicKey,

generateKeyPair, deleteKeyPair

verifyUserPINdeselect, cardReset

verifyUserPIN[userPINBlocked]

deselect, cardReset

verifyUserPIN[userPINBlocked]

authenticateUser

deselect, cardReset

authenticateUser

verifyUserPIN

updateUserPIN

deselect, cardReset

verifyUserPIN[userPINBlocked]

select

updateUserPIN, verifyUserPIN

generateKeyPair, getPublicKey,

getKeysInfo, enableUser,

disableUser, deleteKeyPair

Figure 3: Command states in the personalised life state

Rigorous Development of JAVA CARD Applications 25

Applet Dead
Applet Personalised

Applet Locked

Selected/User Administration

verifyMasterPIN[Blocked]

verifyMasterPIN, updateUserPIN

deselect, cardReset

select

updateUserPIN[MasterPINOK]

Figure 4: Command states in the locked life state

Figure 3 shows the details of the personalised life state. This is the ap-
plet’s main operational state in which most of the application and adminis-
tration commands are enabled. As before, after selection the applet is in se-
lected command state. Once a command belonging to one of the three classes
(application, system administration, user administration) is invoked the command
state is changed accordingly and the applet stays in this state until the end
of the session. To enter a different command mode the session has to be
restarted. The verifyUserPIN command is treated in a special way—since the
PIN code is required by the commands both in system and user administration
modes invoking verifyUserPIN does not change the command state of the ap-
plet. However if the PIN verification failed the maximum allowed number of
times (userPINBlocked) the applet’s life state is changed to state locked where
special rules apply for unblocking the PIN code. The only application mode
command is authenticateUser, the only user administration command is upda-
teUserPIN and in system administration mode we have the following commands
enabled: generateKeyPair, deleteKeyPair, getPublicKey, getKeysInfo, disableUser
and enableUser.

Finally we describe the command protocol for the applet life state locked
(Figure 4). As in case of life state selectable there are two equivalent command
states—selected and user administration. The only two commands that are al-
lowed here are verifyMasterPIN and updateUserPIN. After successful master PIN
verification (MasterPINOK) the updateUserPIN command sets the new user PIN
code and unblocks it moving the applet back to personalised life state. In case
the master PIN verification failed the applet life state changes to dead from
which there is no return—the applet becomes unoperational.

All the command invocation sequences that are not defined by the diagrams
are forbidden—in case of any attempt to violate the defined protocol the ap-
plet should end the communication immediately by throwing a suitable excep-
tion.

Before continuing we would like to make a comment: notice that we already
gave a lot of semi formal information about the applet we are building without
writing or presenting a single line of JAVA CARD code so far.

26 Wojciech Mostowski

Name Input parameters Length Integrity APDUs
authenticateUser User ID, the challenge 1+256 No Many
updateUserPIN New PIN data 8 Yes 1
setMasterPIN PIN data 16 Yes 1
verifyUserPIN PIN data 8 Yes 1
verifyMasterPIN PIN data 16 Yes 1
generateKeyPair User ID 1 No 1
deleteKeyPair User ID 1 No 1
getPublicKey User ID 1 No 1
disableUser User ID 1 No 1
enableUser User ID 1 No 1
getKeysInfo None 0 No 1

Table 2: Command parameters

Name Response data Length Integrity
authenticateUser SHA1 code 20 No
updateUserPIN None 0 No
setMasterPIN None 0 No
verifyUserPIN None 0 No
verifyMasterPIN None 0 No
generateKeyPair None 0 No
deleteKeyPair None 0 No
getPublicKey User’s public key 131 Yes
disableUser None 0 No
enableUser None 0 No
getKeysInfo User IDs 0. . .Max Users No

Table 3: Command responses

4.4 Command Processing

It is time to focus on the actual command processing. For each of the commands
we listed we now define which parameters a given command takes, whether there
should be extra integrity checks on the delivered data, if the command is allowed
to spread across multiple APDUs and what is the response data (again with the
indication of whether extra integrity checks are required). Tables 2 and 3 show
the complete list.

Taking into account everything we have said so far about commands we
now show how the actual dispatching of the commands can be done inside the
JAVA CARD applet based on the examples of updateUserPIN, getPublicKey and
authenticateUser. Let’s start with updateUserPIN. Recall that this command
had a conditional PIN check depending on the current applet’s life state. It
also expects 8 bytes of input data and there is a required integrity check on the

Rigorous Development of JAVA CARD Applications 27

data. There is no response data, just a status word is sent back to the host
indicating the (un)successful invocation of the command. The command should
also follow the protocol we defined. Here is the code:

/** @param apdu the incoming apdu packet to dispatch */

public void dispatchUpdateUserPin(APDU apdu) {

updateCommandState(UPDATE_USER_PIN);

switch (curr_applet_state) {

case AS_SELECTABLE: break;

case AS_PERSONALISED: checkPIN(); break;

case AS_LOCKED: checkMasterPIN(); break;

}

readInput(apdu, (short)28); // modifies temp

verifyInput((short)8);

userPIN.update(temp, (short)0, (byte)8);

if (curr_applet_state == AS_LOCKED) {

setAppletState(UPDATE_USER_PIN, AS_PERSONALISED);

}

}

The call to updateCommandState makes sure that the command is invoked ac-
cording to the protocol. The updateCommandState implements a state machine
that follows the diagrams shown. The switch statement performs the condi-
tional PIN check (the AS prefix stands for applet state). Then the input is read,
which has to be 8 bytes long plus 20 bytes for the SHA1 code for data integrity
verification. After the data is retrieved from the APDU packet it is stored in the
temp array, which is allocated once during applet installation and is sufficiently
big to serve all command dispatching methods, thus keeping memory consump-
tion fixed. The method verifyInput performs the actual verification of the
data stored in the temp array. Then the actual user PIN update happens. If
the applet happens to be in locked life state then it switches back to personalised
state after successful update (setAppletState).

Let us take a look at getPublicKey now. This command does not require any
PIN checks, expects 1 byte of input data without integrity verification and sends
back 131 bytes of response plus additional 20 bytes of SHA1 code for integrity
verification on the host side. We skip the actual key retrieval code as it is not
relevant at this point. Here is the code:

public void dispatchGetPublicKey(APDU apdu) {

updateCommandState(GET_PUBLIC_KEY);

readInput(apdu, (short)1);

// retrieve the key, prepare the response data in temp

integrifyOutput((short)131);

sendResponse(apdu, (short)151);

}

The sendResponse method simply sends the data prepared in the temp array
back to the host.

28 Wojciech Mostowski

Now let us see how the code for authenticateUser command is constructed.
This command is the only one that is allowed to be sent in parts in multiple
APDUs. There is no PIN check required nor input data integrity verification.
The response is 20 bytes of SHA1 code calculated from the received message.
Here is the code:

/** @param apdu the incoming apdu packet to dispatch */

public void dispatchAuthUser(APDU apdu) {

updateCommandState(AUTH_USER);

readBigInput(apdu, (short)257);

if (multiple_package == (byte)0) { // everything read

// process bigtemp, prepare the response in temp

sendResponse(apdu, (short)20);

}

}

The readBigInput method requires a bit more attention. Both readBigInput
and updateCommandState make sure that the data parts contained in different
APDUs are sent in proper order and are not interleaved by any other commands.
This is done by using global applet variables and requiring the multiple APDUs
sent over to the applet to be properly marked as we will show shortly.

Now we give some more details about the auxiliary methods that are used by
dispatch methods. The readInput method reads the input from the incoming
APDU into the temp array in a standard way reporting any possible data length
mismatches by throwing an appropriate exception which in turn causes a status
word indicating an error condition to be sent back to the host.

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length to read

*/

public void readInput(APDU apdu, short expectedLength) {

byte buffer[] = apdu.getBuffer();

short apduDataOffset = 0;

short dataLength =

(short)(buffer[ISO7816.OFFSET_LC] & (byte)0xFF);

if (dataLength != expectedLength) {

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

short bytesRead = apdu.setIncomingAndReceive();

while (bytesRead > 0) {

if ((short)(bytesRead + apduDataOffset) > expectedLength) {

ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

}

Util.arrayCopyNonAtomic(buffer, ISO7816.OFFSET_CDATA,

temp, apduDataOffset, bytesRead);

apduDataOffset += bytesRead;

bytesRead = apdu.receiveBytes(ISO7816.OFFSET_CDATA);

}

}

Rigorous Development of JAVA CARD Applications 29

More interesting methods are setAppletState, updateCommandState and
readBigInput. The first one is responsible for setting and changing the applet’s
life state. It is the calling method’s responsibility to ensure that a proper con-
dition for changing this state is satisfied (e.g. that master PIN is verified when
updateUserPIN changes the state from locked to personalised). The method ma-
nipulates the global applet variable called curr applet state. Here is a small
part of setAppletState:

/**

* @param command the code of the command changing the state

* @param newstate the new state to be set

*/

public void setAppletState(byte command, short newstate) {

switch (command) {

// ...

case UPDATE_USER_PIN:

// ’masterPIN.isValidated() == true’ should hold here

if (curr_applet_state == AS_LOCKED) {

curr_applet_state = newstate;

curr_command_state = CS_START;

}

break;

// ...

}

}

Finally we get to the updateCommandState and readBigInput methods that
share some global applet variables to ensure that the protocol is followed. One
of them is multiple package which indicates whether a multiple APDU com-
mand is being processed—when equal to 0 there is no multiple APDU command
process in progress, when greater than 0 it is equal to the code of the multiple
command being processed. The updateCommandState method first checks if
the life state of the applet is the dead state and if so, it throws an exception
interrupting the communication. Then it checks if there is multiple APDU pro-
cessing in progress and if so if the current command belongs to the sequence
of currently processed multiple APDUs throwing an exception if there is a mis-
match. Finally the method checks if the command invocation is according to
the protocol defined. The global applet variable curr command state stores
the current command state (selected, application, user administration or system
administration). The code follows the diagrams shown before, throwing an ex-
ception if the command is invoked out of the allowed sequence:

/** @param command the code of the invoking command */

public void updateCommandState(byte command) {

if (curr_applet_state == AS_DEAD) {

ISOException.throwIt(SW_APPLET_DEAD);

}

if (multiple_package != (byte)0 && command != multiple_package) {

30 Wojciech Mostowski

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

}

switch (command) {

case VERIFY_USER_PIN:

if (curr_applet_state != AS_PERSONALISED) {

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

} else {

if (curr_command_state == CS_APPLICATION) {

ISOException.throwIt(SW_COMMAND_OUT_OF_SEQUENCE);

} else {

// do nothing, there is no state change

}

}

break;

case UPDATE_USER_PIN:

// ...

}

}

The readBigInput method uses both global variables and the form of the APDU
to control the multiple APDU communication. The p2 header byte of the in-
coming APDU indicates the total number of APDUs to come, the p1 header
byte indicates which APDU packet is being received (“p1-th out of p2 packets”).
The global variables multiple curr and multiple total are used to control
this. Whenever a multiple APDU packet is received p1 and p2 are checked
against global variables to verify that the proper sequence is maintained. Then
the data from the APDU is appended to the bigtemp array which collects the
data from the multiple APDUs. The code for readBigInput is the following:

/**

* @param apdu the incoming apdu to read data from

* @param expectedLength the expected data length to read

*/

public void readBigInput(APDU apdu, short expectedLength) {

byte buffer[] = apdu.getBuffer();

byte ins = buffer[ISO7816.OFFSET_INS];

byte p1 = buffer[ISO7816.OFFSET_P1];

byte p2 = buffer[ISO7816.OFFSET_P2];

if (p1 == (byte)0 && multiple_total == (byte)0) {

multiple_total = p2;

multiple_package = ins;

} else {

if (p1 >= p2 || p2 != multiple_total ||

p1 != (byte)(multiple_curr + (byte)1)) {

ISOException.throwIt(ISO7816.SW_WRONG_DATA);

}

}

multiple_curr = p1;

// append the data from APDU to bigtemp array

Rigorous Development of JAVA CARD Applications 31

multiple_readnum = apduDataOffset;

if ((byte)(multiple_curr + (byte)1) == multiple_total) {

resetMultiple(); // data in bigtemp ready for use

}

}

As we said before we want to use the support of a CASE tool to automate
the development process. Parts of the applet were created automatically by
Together Control Center extension modules we developed, e.g. the skeletons
for command dispatching methods were created automatically out of the given
command tables. Most of the other code was engineered “by hand”. However
we still see possibilities to automate the process further with the support of a
CASE tool in the following ways:

• Having methods like readInput, readBigInput, verifyInput, etc. among
the standard set of JAVA CARD helper methods, idioms and design patterns,
together with the specifications (see the following subsection). This can
be easily implemented in Together Control Center.

• Generating (possibly with a little help from the developer) the code for
setAppletState and updateCommandState methods from the state chart
diagrams like the ones presented here also incorporating formal specifica-
tions for verification. Again this should be implementable in the tool of
our choice (e.g. in Together Control Center there are ready tools to create
code from sequence diagrams and vice versa).

• The PIN check routines seem to be a good candidate for a pattern, too,
as it is done in a very similar way in every JAVA CARD applet: there is a
global applet object representing the PIN, there is one APDU command
that verifies the delivered PIN, sets the validation flag of the PIN object
accordingly for the current terminal session and returns the result of PIN
verification back to the host also indicating the number of tries left in case
of failure. Then any command requiring PIN authentication can refer to
PIN object by a single method call.

4.5 Formal Specification

It is almost clear that the presented dispatching methods follow the semi formal
specifications we gave earlier. The setAppletState, updateCommandState and
readBigInput and possibly readInput methods require a bit more attention
and this is where we turn to formal specification.

First we can define the state chart behaviour more formally by giving Object
Constraint Language (OCL, part of UML) [21] specifications like the following.
Those specifications don’t reflect the whole diagram set that we have shown,
they are just examples. First we can tie a given applet life state to a condition
that causes the applet to be in a given state, e.g.:

32 Wojciech Mostowski

context Safe_Applet

inv: self.curr_applet_state = AS_LOCKED implies

self.userPIN.getTriesRemaining() = 0

inv: self.curr_applet_state = AS_DEAD implies

self.masterPIN.getTriesRemaining() = 0

Next we can limit a set of possible command states in a given life state by the
following expression:

context Safe_Applet

inv: self.curr_applet_state = AS_LOCKED implies

self.curr_command_state = CS_START or

self.curr_command_state = CS_SELECTED

Finally we can describe some of the behaviour of setAppletState and update-
CommandState with the following expressions:

context Safe_Applet::setAppletState(command: byte, newstate: short)

pre: command = UPDATE_USER_PIN and newstate = AS_PERSONALISED implies

self.masterPIN.isValidated() and

self.curr_applet_state = AS_LOCKED

post: self.curr_applet_state = AS_PERSONALISED and

self.curr_command_state = CS_START

context Safe_Applet::updateCommandState(command: byte)

post: command = VERIFY_USER_PIN and

self.curr_applet_state@pre = AS_PERSONALISED and

self.curr_command_state@pre <> CS_APPLICATION and

self.curr_command_state@pre <> CS_START

implies

self.curr_command_state = self.curr_command_state@pre

As mentioned before, such specifications follow exactly the diagrams and it
should be possible to just generate them automatically, possibly with a little bit
of user intervention.

The second set of specifications makes sure that the readInput and read-
BigInput methods behave in a consistent and safe way. The following OCL
invariants express the consistency conditions that the global applet variables
used by the read methods should satisfy:

context Safe_Applet

inv: self.multiple_readnum <= self.bigtemp->size()

inv: self.multiple_package <> 0 implies

self.multiple_curr < self.multiple_total

inv: self.multiple_package = 0 or self.multiple_package = AUTH_USER

inv: self.multiple_total > 0 implies self.multiple_package <> 0

Here we also stated that the authenticateUser command is the only one that can
spread over multiple APDUs. The next are two preconditions that make sure
the read methods don’t exceed the temporary array space they operate on:

Rigorous Development of JAVA CARD Applications 33

context Safe_Applet::readInput(apdu: APDU, expectedLength: short)

pre: self.temp <> null and expectedLength <= self.temp->size()

context Safe_Applet::readBigInput(apdu: APDU, expectedLength: short)

pre: self.bigtemp <> null and expectedLength <= self.bigtemp->size()

Such specifications should be associated with a pattern that produces our read
methods and put into design automatically together with the actual code.

Of course one may want to give some more in-depth specifications of the
application describing its functionality or some safety properties. In the next
subsection we show how the already existing KeY tool features can be used to
produce such a specification. Here we briefly discuss another situation where
formal specification can prove itself helpful. Suppose we would like to extend our
application to keep track of unsuccessful authentication attempts and disable
the access once a certain number of unsuccessful attempts has been reached
(similarly to PIN code verification). This is pretty straightforward to program—
a counter variable needs to be increased after each failed attempt and once some
threshold value is reached the following access attempts are rejected. However,
when coded uncarefully, the counter may get increased during rejected attempts
as well. After reaching the maximal value for a data type used (say byte) it will
leap back to 0 ending up in an undesired, security breaching state. A typical
security related specification idiom that could be used here would be that a
card stays blocked after the maximum number of tries has been reached until it
is explicitly released, e.g. by giving the master PIN. To verify such a property
one needs formalisation of JAVA integer arithmetics that handles properly the
“modulo” behaviour of JAVA integer types. The KeY system both supports the
specification idioms [2] and contains formalisation of JAVA integer arithmetics
as part of the KeY specification library [5].

The specifications we have shown can be subjected to formal verification.
Parts of the specifications that describe the behaviour of the state machines
controlling the life cycle and the protocol were successfully verified with the
KeY system. Most of the other specifications refer to methods that use the JAVA

CARD API and to verify them one needs to have access to formal specifications
of the API. Such specifications [14, 18] for JML and ESC/JAVA are publicly
available on the web [17], but they need to be ported to OCL to be usable with
the KeY system.

One thing that we did not specify is that the applet data stays consistent
in case when an applet’s execution terminates abnormally by ripping out the
card from the reader. This would require to specify a kind of invariant for
our program that holds at any point of execution of the program, not only
before and after the program is executed. This is not possible to express in
OCL, neither is it possible to express in the KeY system’s Dynamic Logic for
JAVA, however, this problem has been solved for pure Dynamic Logic [4]. We
are currently working on extending Dynamic Logic for JAVA with an “always”
operator, which will allow to specify and prove such “rip-out proof” properties
with the KeY system. Here we should also mention that the “rip-out” problem of

34 Wojciech Mostowski

Safe Applet described in Section 3 does not exist any more in the reengineered
version of the applet.

4.6 Employing the KeY System

Recall that one of the problems we found in Safe Applet was that a single user
ID can be registered more than once in the applet. Let’s first look at the class
representing a single user record in the applet:

public class User {

boolean empty = true;

boolean enabled = true;

byte userID = (byte)0;

KeyData keydata = null;

}

Given this we would like to specify that there shouldn’t exist two (non empty)
objects of this class in our applet having the same user ID. Then it can be verified
formally that any code that operates on those records does not violate this
condition. The condition just mentioned is a slight modification of a standard
specification pattern in the KeY system called AttributeHasKeyProp as Figure 5
shows. After the pattern is applied the following invariant is produced for User
class:

context User:

inv: User.allInstances->forAll(c1, c2 |

c1.userID = c2.userID implies c1 = c2)

After a small modification we get what we want:

context User:

inv: User.allInstances->forAll(c1, c2 |

not c1.empty and not c2.empty and

c1.userID = c2.userID implies c1 = c2)

5 Conclusions

We presented an approach to rigorous development of JAVA CARD applications.
We have shown how UML can be used to specify an applet’s behaviour and how
such specifications can be translated into actual code. We have also presented
how we can support formal specification and verification in JAVACARD develop-
ment. A modern CASE tool plays an important role in our approach giving sup-
port for UML specifications, software patterns, formal verification (KeY system)
and last but not least easy testing of JAVA CARD applets (we have developed a To-
gether Control Center plug-in supporting this—http://www.cs.chalmers.se/
~woj/javacard/). Most of the code we have shown was developed by hand, but
we were precisely following the UML diagrams we constructed, the coding was

Rigorous Development of JAVA CARD Applications 35

Figure 5: Applying specification patterns in the KeY system

quite straightforward and almost a one pass process—we made the applet work
in the expected way in a very short time. However, as we already mentioned,
designing the application in UML requires some expertise in a given domain
and is a bit more lengthy process.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The
KeY system: Integrating object-oriented design and formal methods. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental Approaches
to Software Engineering. 5th International Conference, FASE 2002 Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2002 Grenoble, France, April 2002, Proceedings, volume 2306
of LNCS, pages 327–330. Springer, 2002.

[2] Thomas Baar, Reiner Hähnle, Theo Sattler, and Peter H. Schmitt. Entwurf-
smustergesteuerte Erzeugung von OCL-Constraints. In K. Mehlhorn and
G. Snelting, editors, Informatik 2000, 30. Jahrestagung der Gesellschaft für
Infomatik, pages 389–404. Springer, September 2000.

[3] Gilles Barthe, Simao Sousa, Guillaume Dufay, and Marieke Huisman.
Jakarta: A toolset for reasoning about JAVA CARD. In Smart Card Pro-
gramming and Security, International Conference on Research in Smart
Cards, e-Smart 2001, Cannes, France. Springer-Verlag, September 2001.

36 Wojciech Mostowski

[4] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order
dynamic logic with trace modalities. In R. Gorè, A. Leitsch, and T. Nip-
kow, editors, Proceedings, International Joint Conference on Automated
Reasoning, Siena, Italy, LNCS 2083, pages 626–641. Springer, 2001.

[5] Bernhard Beckert and Steffen Schlager. Integer arithmetic in the specifica-
tion and verification of JAVA programs. In Proceedings, Workshop on Tools
for System Design and Verification (FM-TOOLS), Reisensburg, Germany,
2002. To appear.

[6] D. Bolignano, D. Le Métayer, and C. Loiseaux. Formal Methods in Practice:
the Missing Link. A Perspective from the Security Area. In Franck Cassez,
Claude Jard, Brigitte Rozoy, and Mark Dermot Ryan, editors, Modeling
and Verification of Parallel Processes, 4th Summer School, MOVEP 2000,
Nantes, France, June 19–23, 2000, volume 2067 of LNCS. Springer-Verlag,
2001.

[7] Dierk Bolten. PAM authentication with an iButton. http://www-
-users.rwth-aachen.de/dierk.bolten/pam ibutton.html.

[8] Zhiqun Chen. JAVACARD Technology for Smart Cards: Architecture and
Programmer’s Guide. JAVA Series. Addison-Wesley, June 2000.

[9] ESC/JAVA homepage. http://www.research.compaq.com/SRC/esc/.

[10] B. Jacobs, H. Meijer, and E. Poll. VerifiCard: A european project for smart
card verification. Newsletter 5 of the Dutch Association for Theoretical
Computer Science (NVTI), 2001.

[11] Jan Jürjens. Developing secure systems with UMLsec — from busi-
ness processes to implementation. In Andreas Pfitzmann Dirk Fox,
Marit Köhntopp, editor, Proc. Verlässliche IT-Systeme 2001 — Sicherheit
in komplexen IT-Infrastrukturen, Kiel, Germany. Vieweg Verlag, 2001.

[12] KeY project homepage. http://i12www.ira.uka.de/~projekt/.

[13] H. Martin and L. du Bousquet. Tools for automated conformance testing
of JAVA CARD applets. Technical report, Gemplus, September 2000.

[14] Hans Meijer and Erik Poll. Towards a full formal specification of the
JAVACARD API. In Smart Card Programming and Security, International
Conference on Research in Smart Cards, e-Smart 2001, Cannes, France.
Springer-Verlag, September 2001.

[15] Object Modelling Group. Unified Modelling Language Specification, version
1.4, September 2001.

[16] Open Card homepage. http://www.opencard.org/.

[17] Erik Poll. Formal interface JAVA specifications for the JAVACARD API 2.1.1.
http://www.cs.kun.nl/~erikpoll/publications/jc211 specs.html.

Rigorous Development of JAVA CARD Applications 37

[18] Erik Poll, Joachim van den Berg, and Bart Jacobs. Specification of the
JAVACARD API in JML. CSI Report CSI-R0005, Computing Science De-
partment, Nijmegen, March 2000.

[19] Trusted Logic homepage. http://www.trusted-logic.fr/.

[20] VerifiCard project homepage. http://verificard.org/.

[21] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise
Modelling with UML. Object Technology Series. Addison-Wesley, Read-
ing/MA, 1999.

38 Wojciech Mostowski

A Program Logic for Handling JAVA CARD’s

Transaction Mechanism

Bernhard Beckert∗ Wojciech Mostowski

Abstract

In this paper we extend a program logic for verifying JAVACARD ap-
plications by introducing a “throughout” operator that allows us to prove
“strong” invariants. Strong invariants can be used to ensure “rip out”
properties of JAVACARD programs (properties that are to be maintained
in case of an unexpected termination of the program). Along with intro-
ducing the “throughout” operator, we show how to handle the JAVACARD

transaction mechanism (and, thus, conditional assignments) in our logic.
We present sequent calculus rules for the extended logic.

1 Introduction

Overview. The work presented in this paper is part of the KeY project [1, 9].
One of the main goals of KeY is to provide deductive verification for a real world
programming language. Our choice is the JAVACARD language [6] (a subset of
JAVA) for programming smart cards. This choice is motivated by the following
reasons. First of all JAVA CARD applications are subject to formal verification,
because they are usually security critical (e.g. authentication) and difficult to
update in case a fault is discovered. At the same time the JAVA CARD language
is easier to handle than full JAVA (for example, there is no concurrency and
no GUI). Also, JAVA CARD programs are smaller than normal JAVA programs
and thus easier to verify. However, there is one particular aspect of JAVA CARD

that does not exists in JAVA and that requires the verification mechanism to
be extended with additional rules and concepts: the persistency of the objects
stored on a smart card in combination with JAVA CARD’s transaction mechanism
(ensuring atomicity of bigger pieces of a program) and the possibility of a card
“rip out” (unexpected termination of a JAVACARD program by taking out the
smart card from the reader/terminal). Since we want to have support for the
full JAVACARD language in the KeY system we have to handle this aspect.

To ensure that a JAVA CARD program is “rip out” safe we need to be able to
specify “strong” invariants—invariants that hold throughout the whole execu-
tion of a JAVACARD program (but not when a transaction is in progress). The

∗Institut für Logik, Komplexität und Deduktionssysteme, Universität Karlsruhe, Germany,
e-mail: beckert@ira.uka.de

39

40 Bernhard Beckert and Wojciech Mostowski

KeY system’s deduction component uses a program logic, which is a version of
Dynamic Logic modified to handle JAVA CARD programs (JAVA CARD DL) [2, 3].
An extension to pure Dynamic Logic to include trace modalities “throughout”
and “at least once” is presented in [4]. Here, we extend that work and intro-
duce the “throughout” operator to JAVA CARD DL (we don’t introduce “at least
once” since it is not necessary for handling “rip out” properties). Then, we
add techniques necessary to deal with the JAVA CARD transaction mechanism
(specifically conditional assignments inside the transactions). We present the
sequent calculus rules for our extensions. So far we have not implemented the
new rules in the KeY system’s interactive prover (the implementation for the
unextended JAVA CARD DL is fully functional). But considering the extensibility
and open architecture of the KeY prover that is not a difficult task.

Related work. As already mentioned the work presented here is based on [4],
which extends pure Dynamic Logic with trace modalities “throughout” and “at
least once”. There exist a number of attempts to extend OCL with temporal
constructs, see [5] for one of them and an overview of some others. In [16] tempo-
ral constructs are introduced to the JAVA Modelling Language (JML), but they
refer to sequences of method invocations and not to sequences of intermediate
program states.

Structure of the Paper. The rest of this paper is organised as follows. Sec-
tion 2 gives some more details on the background and motivation of our work
and gives some insights into the JAVA CARD transaction mechanism. Section 3
contains a brief introduction to JAVA CARD Dynamic Logic and Section 4 in-
troduces the “throughout” operator in detail, gives its semantics and sequent
calculus rules to handle the new operator and transaction mechanism. Section 5
presents some of the rules in action by giving simple proof examples and finally
Section 6 summarises the paper.

2 Background

The KeY Project. The main goal of the KeY project [1, 9] is to enhance
a commercial CASE tool with functionality for formal specification and deduc-
tive verification and, thus, to integrate formal methods into real-world software
development processes. Accordingly, the design principles for the software ver-
ification component of the KeY system are:

• The specification language should be usable by people who do not have
years of training in formal methods. The Object Constraint Language
(OCL), which is incorporated into current version of Unified Modelling
Language (UML) is the specification language of our choice.

• The programs that are verified should be written in a “real” object-
oriented programming language. We decided to use JAVA CARD (we al-
ready stated our reasons for this in the introduction).

A Program Logic for Handling JAVACARD’s Transaction Mechanism 41

For verifying JAVACARD programs, the already mentioned JAVA CARD Dynamic
Logic has been developed within the KeY project (Section 3 contains a detailed
description of this logic). The KeY system translates OCL specifications into
JAVA CARD DL formulas, whose validity can then be proved with the KeY sys-
tem’s deduction component.

Motivation. The main motivation for this work resulted from an analysis of a
JAVA CARD case study [11]. In short, the case study involves a JAVACARD applet
that is used for user authentication in a Linux system (instead of a password
mechanism). After analysing the application and testing it, the following obser-
vation was made: The JAVACARD applet in question is not “rip-out” proof. That
is, it is possible to destroy the applet’s functionality by taking out (ripping out)
the JAVA CARD device from the card reader (terminal) during the authentication
process. The applet’s memory is corrupted and it is left in an undefined state,
causing all subsequent authentication attempts to be unsuccessful (fortunately
this error causes the applet to become useless but does not allow unauthorised
access, which would have been worse).

It became clear that, to avoid such errors, one has to be able to specify
(and if possible verify) the property that a certain invariant is maintained at all
times during the applet’s execution, such that it holds in particular in case of
an abrupt termination. Standard UML/OCL invariants do not suffice for this
purpose, because their semantics is that if they hold before a method is executed
then they hold after execution of a method. Normally it is not required for an
invariant to hold in the intermediate states of a method’s execution (although it
is not very clear what the precise semantics of OCL invariant is). To solve this
problem, we introduce “strong” invariants, which allow us to specify properties
about all intermediate states of a program.

For example, the following “strong” invariant (expressed in pseudo OCL)
says that we do not allow partially initialised objects of type PersonalData at
any point in our program. In case the program is abruptly terminated we should
end up with either a fully initialised object or an uninitialised (empty) one:

context PersonalData throughout:

not self.empty implies

self.firstName <> null and self.lastName <> null and self.age > 0

Since the case study was explored in the context of the KeY project, we extended
the existing JAVACARD DL with a new modality to handle strong invariants.

The JAVA CARD Transaction Mechanism. Here we describe the aspects
of transaction handling in JAVA CARD relevant for this paper. A full description
of the transaction mechanism can be found in [6, 13, 14, 15].

The memory model of JAVACARD differs slightly from JAVA’s model. In
smart cards there are two kinds of writable memory: EEPROM—persistent
memory, which holds its contents between card sessions—and RAM—non-per-
sistent (transient) memory, whose contents disappear when power loss occurs,

42 Bernhard Beckert and Wojciech Mostowski

i.e. when the card is removed from the card reader. Thus every memory element
in JAVA CARD (variable or object field) is either persistent or transient. The JAVA

CARD language specification gives the following rules (this is a slightly simplified
view of what is really happening):

• All objects (including the reference to the currently running applet, this,
and arrays) are created in persistent memory. Thus, in JAVA CARD all as-
signments like “o.attr = 2;”, “this.a = 3;” and “arr[i] = 4;” have
permanent character; that is, the assigned values will be kept after the
card loses power.

• A programmer can create an array with transient contents by calling a
certain method from the JAVACARD API (JCSystem.makeTransient...).
Currently there is no possibility to make objects other than arrays tran-
sient.

• The contents of all local variables are transient.

The distinction between persistent and transient objects is very important since
these two types of objects are treated in a different way by JAVA CARD’s transac-
tion mechanism. The following are the JAVACARD system calls for transactions
with their description:

• JCSystem.beginTransaction() begins an atomic transaction. From this
point on, all the assignments to fields of persistent objects are executed
conditionally, while assignments to transient variables or array elements
are executed unconditionally (immediately).

• JCSystem.commitTransaction() commits the transaction. All condi-
tional assignments are committed (in one atomic step).

• JCSystem.abortTransaction() aborts the transaction. All the condi-
tional assignments are rolled back to the state in which the transaction
started. Assignments to transient variables and array contents remain
unchanged (as if there was no transaction in progress).

As an example to illustrate how transactions work in practice, consider the
following fragment of a JAVA CARD program:

this.a = 100;

int i = 0;

JCSystem.beginTransaction();

i = this.a;

this.a = 200;

JCSystem.abortTransaction();

After this program is executed the value of this.a is still 100 (value before the
transaction), while the value of i now is 100 (the value it was updated to during
the transaction).

A Program Logic for Handling JAVACARD’s Transaction Mechanism 43

Transactions do not have to be nested properly with other program con-
structs, i.e. a transaction can be started within one method and committed
within another method. However, transactions must be nested properly with
each other (which is not relevant for the current version of JAVA CARD, where
the nesting depth of transactions is restricted to 1).

The whole program piece inside the transaction is seen by the outside world
as if it was executed in one atomic step (considering the persistent objects). By
introducing strong invariants we want to ensure the consistency of the persis-
tent memory of a JAVA CARD applet, thus the strong invariants will not (and
should not) be checked within a transaction—in case our program is terminated
abruptly while a transaction is in progress, the persistent variables will be rolled
back to the state before the transaction was started for which the strong invari-
ant was established.

3 JAVA CARD Dynamic Logic

Dynamic Logic [7, 8, 10, 12] can be seen as an extension of Hoare logic. It
is a first-order modal logic with modalities [p] and 〈p〉 for every program p
(we allow p to be any sequence of JAVACARD statements). In the semantics
of these modalities a world w (called state in the DL framework) is accessible
from the current world, if the program p terminates in w when started in the
current world. The formula [p]φ expresses that φ holds in all final states of p,
and 〈p〉φ expresses that φ holds in some final state of p. In versions of DL
with a non-deterministic programming language there can be several such fi-
nal states (worlds). Here, since JAVA CARD programs are deterministic, there
is exactly one such world (if p terminates) or there is no such world (if p does
not terminate). The formula φ→ 〈p〉ψ is valid if, for every state s satisfying
precondition φ, a run of the program p starting in s terminates, and in the
terminating state the post-condition ψ holds. The formula φ→ [p]ψ expresses
the same, except that termination of p is not required, i.e. ψ must only hold if
p terminates.

The formula φ→ [p]ψ is similar to the Hoare triple {φ}p{ψ}. But in contrast
to Hoare logic, the set of formulas of DL is closed under the usual logical oper-
ators. In Hoare logic, the formulas φ and ψ are pure first-order formulas. DL
allows to involve programs in the descriptions φ resp. ψ of states. For example,
using a program, it is easy to specify that a data structure is not cyclic, which is
impossible in pure first-order logic. Because all JAVA constructs are available in
DL for the description of states (including while loops and recursion) it is not
necessary to define an abstract data type state and to represent states as terms
of that type; instead DL formulas can be used to give a (partial) description of
states, which is a more flexible technique and allows one to concentrate on the
relevant properties of a state.

44 Bernhard Beckert and Wojciech Mostowski

3.1 Syntax of JAVA CARD DL

As said above, a dynamic logic is constructed by extending some non-dynamic
logic with modal operators of the form 〈·〉 and [·]. The non-dynamic base logic of
our DL is a typed first-order predicate logic. We do not describe in detail what
the types of our logic are (basically they are identical with the JAVA types)
nor how exactly terms and formulas are built. The definitions can be found
in [2]. Note that terms (which we often call “logical terms” in the following)
are different from JAVA expressions; they never have side effects.

In order to reduce the complexity of the programs occurring in DL formulas,
we introduce the notion of a program context. The context can consist of any
JAVA CARD program, i.e. it is a sequence of class and interface definitions. Syntax
and semantics of DL formulas are then defined with respect to a given context;
and the programs in DL formulas are assumed not to contain class definitions.

The programs in DL formulas are basically executable JAVA CARD code.
However, we introduced an additional construct that is not available in plain
JAVA CARD. The purpose of this extension is the handling of method calls.
Methods are invoked by syntactically replacing the call by the method’s im-
plementation. To handle the return statement in the right way, it is necessary
(a) to record the object field or variable x that the result is to be assigned
to, and to mark the boundaries of the implementation prog when it is substi-
tuted for the method call. For that purpose, we allow statements of the form
method call(x){prog} to occur in DL programs. Note, that this is a “harm-
less” extension because the additional construct is only used for proof purposes
and never occurs in the verified JAVACARD programs.

3.2 Semantics of JAVA CARD DL

The semantics of a program p is a state transition, i.e. it assigns to each state s
the set of all states that can be reached by running p starting in s. Since JAVA

CARD is deterministic, that set either contains exactly one state (if p terminates
normally) or is empty (if p does not terminate or terminates abruptly).

For formulas φ that do not contain programs, the notion of φ being satisfied
by a state is defined as usual in first-order logic. A formula 〈p〉φ is satisfied by
a state s if the program p, when started in s, terminates normally in a state s′

in which φ is satisfied. A formula is satisfied by a model M , if it is satisfied by
one of the states of M . A formula is valid in a model M if it is satisfied by all
states of M ; and a formula is valid if it is valid in all models.

As mentioned above, we consider programs that terminate abruptly to be
non-terminating. Thus, for example, 〈throw x;〉φ is unsatisfiable for all φ. Nev-
ertheless, it is possible to express and (if true) prove the fact that a program p
terminates abruptly. For example, the formula

e .= null → 〈try{p}catch(Exception e){}〉(¬ (e .= null))

is true in a state s if and only if the program p, when started in s, terminates
abruptly by throwing an exception (as otherwise no object is bound to e).

A Program Logic for Handling JAVACARD’s Transaction Mechanism 45

Sequents are notated following the scheme φ1, . . . , φm ` ψ1, . . . , ψn which
has the same semantics as the formula (∀x1) · · · (∀xk)((φ1 ∧ . . . ∧ φm) → (ψ1 ∨
. . . ∨ ψn)), where x1, . . . , xk are the free variables of the sequent.

3.3 State Updates

To simplify notation, we allow updates of the form {x := t} resp. {o.a := t} to
be attached to terms and formulas, where x is a program variable, o is a term
denoting an object with attribute a, and t is a term. The intuitive meaning of
an update is that the term or formula that it is attached to is to be evaluated
after changing the state accordingly, i.e. {x := t}φ has the same semantics as
〈x = t;〉φ.

3.4 Rules of the Sequent Calculus

Here we only present a small number of rules necessary to get an intuition of
how the JAVA CARD DL sequent calculus works.

Notation. The rules of our calculus operate on the first active command p
of a program πpω. The non-active prefix π consists of an arbitrary sequence
of opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks,
and beginnings “method call(. . .){” of method invocation blocks. The prefix
is needed to keep track of the blocks that the (first) active command is part
of, such that the abruptly terminating statements throw, return, break, and
continue can be handled appropriately.1 The postfix ω denotes the “rest” of
the program, i.e. everything except the non-active prefix and the part of the
program the rule operates on. For example, if a rule is applied to the following
JAVA block operating on its first active command i=0; then the non-active
prefix π and the “rest” ω are the marked parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; }finally{ k=0; }}︸ ︷︷ ︸
ω

In the following rule schemata, U stands for an arbitrary update.

The Rule for if. As a first simple example, we present the rule for the if
statement:

Γ, U(b .= true) ` U〈πpω〉φ Γ, U(b .= false) ` U〈πqω〉φ
Γ ` U〈π if(b) {p} else {q}ω〉φ

(R1)

The rule has two premises, which correspond to the two cases of the if state-
ment. The semantics of this rule is that, if the two premises hold in a state,

1In DL versions for simple artificial programming languages, where no prefixes are needed,
any formula of the form 〈pq〉φ can be replaced by 〈p〉〈q〉φ. In our calculus, splitting of 〈πpqω〉φ
into 〈πp〉〈qω〉φ is not possible (unless the prefix π is empty) because πp is not a valid program;
and the formula 〈πpω〉〈πqω〉φ cannot be used either because its semantics is in general different
from that of 〈πpqω〉φ.

46 Bernhard Beckert and Wojciech Mostowski

then the conclusion is true in that state. In particular, if the two premises are
valid, then the conclusion is valid.

In practice, rules are applied from bottom to top: from the old proof obliga-
tion, new proof obligations are derived. As the if rule demonstrates, applying
a rule from bottom to top corresponds to a symbolic execution of the program
to be verified.

The Assignment Rule and Handling State Updates. The assignment
rule

Γ ` U{loc := expr}〈π ω〉φ
Γ ` U〈π loc = expr;ω〉φ

(R2)

adds the assignment to the list of updates U . Of course, this does not solve
the problem of computing the effect of an assignment, which is particularly
complicated in JAVA because of aliasing. This problem is postponed and solved
by rules for simplifying updates that are attached to formulas whenever possible
(without branching the proof).

The assignment rule can only be used if the expression expr is a logical
term. Otherwise, other rules have to be applied first to evaluate expr (as that
evaluation may have side effects). For example, these rules replace the formula
〈x = ++i;〉φ with 〈i = i+1; x = i;〉φ.

4 Extension for Handling “Throughout” and
Transactions

In some regard JAVACARD DL (and other versions of DL) lacks expressivity—the
semantics of a program is a relation between states; formulas can only describe
the input/output behaviour of programs. JAVA CARD DL cannot be used to
reason about program behaviour not manifested in the input/output relation.
Therefore, it is inadequate for verifying strong invariants, which must be valid
throughout program execution.

Following [4], we overcome this deficiency and increase the expressivity of
JAVA CARD DL by adding a new modality [[·]] (“throughout”). In the extended
logic, the semantics of a program is the sequence of all states its execution
passes through when started in the current state (its trace). Using [[·]], it is
possible to specify properties of the intermediate states of terminating and non-
terminating programs. And such properties (typically strong invariants and
safety constraints) can be verified using the JAVACARD DL calculus extended
with additional sequent rules for [[·]] presented in Section 4.1.

A “throughout” property (formula) has to be checked after every single
field or variable assignment, i.e. the sequent rules for the throughout modality
will have more premises and branch more frequently. According to JAVA CARD

runtime environment specification [14] each single field or variable assignment
is atomic. This matches exactly JAVACARD DL’s notion of a single update.
That means that a “throughout” property has to hold after every single JAVA

A Program Logic for Handling JAVACARD’s Transaction Mechanism 47

CARD DL update. However, the additional checks have to be suspended when
a transaction is in progress. This will require marking the modality (resp. the
program in the modality) with a tag saying that a transaction is in progress, so
that different rules can be applied. Since transactions do not have to be nested
properly with other program constructs, enclosing a transaction in a block with
a separate set of rules for that block (like the method call blocks used for
method bodies) is not possible.

In addition, we have to cover conditional assignments and assignment roll-
back (after abortTransaction) in the calculus. This not only affects the
“throughout” modality, but the 〈·〉 and [·] modalities as well, since rolling back
an assignment affects the final program state.

Usually only the formulas of the form φ→ [[p]]φ will be considered in practice,
where φ can be seen as a “throughout” (strong) invariant. Also one can view
a normal invariant as a special case of a “throughout” property where method
execution is defined to be atomic.

4.1 Additional Sequent Calculus Rules for the
[[·]] Modality

Below, we present the assignment and the while rules for the [[·]] modality. Due
to space restrictions, we cannot list all additional rules; however, the other loop
rules are very similar to the while rule, and all other [[·]] rules are essentially the
same as for [·]—except for the transaction rules which we present in the next
subsection.

The Assignment Rule for [[·]]. Assignments loc = expr; are atomic pro-
grams. By definition, their semantics is a trace consisting of the initial state s
and the final state s′ = {loc := vals(expr)}s. Therefore, the meaning of
[[loc = expr;]]φ is that φ is true in both s and s′, which is what the two
premises of the following assignment rule express:

Γ ` Uφ Γ ` U{loc := expr}[[πω]]φ
Γ ` U [[π loc = expr; ω]]φ

(R3)

The left premise states that the formula φ has to hold in the state s before
the assignment takes place. The right premise says that φ has to hold in the
state s′ after the assignment—and in all states thereafter during the execution
of the rest ω of the program. As for the other modalities, the precondition for
an application of the assignment rule is that expr is a logical term (and, in
particular, free of side effects).

It is easy to see that using this rule causes some extra branching of the proofs
involving the [[·]] modality. This branching is unavoidable due to the fact that
the strong invariant has to be checked (evaluated) for each intermediate state of
the program execution. However, many of those branches, which do not involve
JAVA CARD programs any more, can be closed automatically.

48 Bernhard Beckert and Wojciech Mostowski

The while Rule for [[·]]. Another essential programming construct, where the
rule for the [[·]] modality differs from the corresponding rule for the [·] modality,
is the while loop. As in the case of the while rule for the [·] modality a user
has to supply a loop invariant Inv . Intuitively, the rule establishes three things:

1. In the state before the loop is executed, some invariant Inv holds.

2. If the body of the loop terminates normally (there is no break and no
exception is thrown but possibly continue is used) then at the end of a
single execution of the loop body the invariant Inv has to hold again.

3. Provided Inv holds, the formula φ has to hold during and continuously
after loop body execution in all of the following cases: (i) when the loop
body is executed once and terminates normally, (ii) when the loop body is
not executed (the loop condition is not satisfied), and (iii) when the loop
body terminates abruptly (by break or throwing an exception) resulting
in a termination of the whole loop.

Formally, the while rule for [[·]] is the following:

Γ ` UInv Inv ` 〈α〉true, [β]Inv Inv ` [[πβω]]φ
Γ ` U [[π λwhile(a) {p} ω]]φ

(R4)

where

α ≡ if(a) {lbreak : {try {lcont : {p′} abort;} catch(Exception e){}}}
β ≡ if(a) lcont : lbreak : {p′}

In the above rule, λ is a (possibly empty) sequence “l1 : . . . ln :” of labels,
and p′ is p with (a) every “continue;” and every “continue li;” changed
to “break lcont;” and (b) every “break;” and every “break li;” changed to
“break lbreak;”. The three premises establish the three conditions listed above,
respectively. When the program p′ terminates normally, the abort in α is
reached and, thus, the formula 〈α〉true evaluates to false and [β]Inv has to be
proved. Enclosing program p′ in “if(a) . . .” takes care of both cases, where
the loop body is executed (intermediate loop body execution) and where it is
not executed (loop exit). They are later in the proof considered separately by
applying the rule for if.

4.2 Additional Sequent Calculus Rules for Transactions

Additional Syntax. Before presenting the sequent rules for transactions, we
first have to introduce some new programming constructs (statements) and
transaction markers to JAVACARD DL. The new statements we need are the
following:

• bT—JAVA CARD beginning of a transaction,

• cT—JAVA CARD end of a transaction (commit),

A Program Logic for Handling JAVACARD’s Transaction Mechanism 49

• aT—JAVA CARD end of a transaction (abort).

Those statements are used in the proof when the transaction is started resp. fin-
ished in the JAVACARD program. The statements are only part of the rules and
not the JAVA CARD programming language. Thus for example, when a transac-
tion is started in a JAVA CARD program by a call to JCSystem.beginTransac-
tion() the calculus assumes the following implementation of beginTransac-
tion():

public class JCSystem {

private static int _transDepth = 0;

public static void beginTransaction() throws TransactionException {

if(_transDepth > 0)

TransactionException.throwIt(TransactionException.IN_PROGRESS);

_transDepth++;

bT;

}

...

Thus, when we encounter any of bT, cT or aT in our proof we can assume they
are properly used (nested).

The second thing we need is the possibility to mark modalities (resp. the
programs they contain) with a tag saying that a transaction is in progress. We
will use two kinds of tags and make them part of the inactive program prefix π
in the sequent. The two markers are:

• TRcommit:—a transaction is in progress and is expected to commit (cT),

• TRabort:—a transaction is in progress and is expected to abort (aT).

This distinction is very helpful in taking care of conditional assignments—since
we know how the transaction is going to terminate beforehand we can treat
conditional assignments correspondingly, commit them immediately in the first
case or “forget” them in the second case. Shortly we will show exactly how this
is done in the rules.

Rules for Beginning a Transaction. For each of the three operators (〈·〉, [·],
[[·]]) there is one “begin transaction” rule. The rules for 〈·〉 and [·] are identical,
so we only show one of them:

Γ ` Uφ Γ ` U [[TRcommit:πω]]φ Γ ` U [[TRabort:πω]]φ
Γ ` U [[π bT; ω]]φ

(R5)

Γ ` U〈TRabort:πω〉φ Γ ` U〈TRcommit:πω〉φ
Γ ` U〈π bT; ω〉φ

(R6)

In case of the [[·]] operator the following things have to be established. First of all,
φ has to hold before the transaction is started. Then we split the sequent into
two cases: the transaction will be terminated by a commit, or the transaction

50 Bernhard Beckert and Wojciech Mostowski

will be terminated by an abort. In both cases the sequent is marked with the
proper tag, so that corresponding rules can be applied later depending on the
case. The 〈·〉 and [·] rules for “begin transaction” are very similar to [[·]] except
that φ does not have to hold before the transaction is started.

Rules for Committing and Aborting Transactions. These rules are the
same for all three operators, so we only show the [[·]] rules.

The first two rules apply when the expected type of termination is encoun-
tered (TRcommit: for commit resp. TRabort: for abort). In that case, the corre-
sponding transaction marker is simply removed, which means that the transac-
tion is no longer in progress. These are the rules:

Γ ` U [[πω]]φ
Γ ` U [[TRcommit:π cT; ω]]φ

(R7)

Γ ` U [[πω]]φ
Γ ` U [[TRabort:π aT; ω]]φ

(R8)

We also have to deal with the case where the transaction is terminated in an
unexpected way, i.e. a commit is encountered when the transaction was ex-
pected to abort and vice versa. In this case we simply use an axiom rule, which
immediately closes a corresponding proof branch (one of the proof branches pro-
duced by the “begin transaction” rule will always become obsolete since each
transaction can only terminate by either commit or abort). The rules are the
following:

Γ ` U [[TRabort:π cT; ω]]φ
(R9)

Γ ` U [[TRcommit:π aT; ω]]φ
(R10)

Rules for Conditional Assignment Handling within a Transaction.
Finally, we come to the essence of conditional assignment handling in our rules.
In case the transaction is expected to commit no special handling is required—
all the assignments are executed immediately. Thus, the rule for an assignment
in the scope of [[TRcommit: . . .]] is the same as the rule for an assignment within [·]
(the same holds for all other programming constructs). Note that, even using
the [[TRcommit: . . .]] modality, φ only has to hold at the end of the transaction,
which is considered to be atomic.

Γ ` U{loc := expr}[[TRcommit:πω]]φ
Γ ` U [[TRcommit:π loc = expr; ω]]φ

(R11)

In case a transaction is terminated by an abort, all the conditional assignments
are rolled back as if they were not performed. If we know that the transac-
tion is going to abort because of a TRabort: marker, we can deliberately choose
not to perform the updates to persistent objects as we encounter them. How-
ever, we cannot simply skip them since the new values assigned to (fields of)
persistent objects during a transaction may be referred to later in the same

A Program Logic for Handling JAVACARD’s Transaction Mechanism 51

transaction (before the abort). The idea to handle this, is to assign the new
value to a copy of the object field or array element while leaving the original
unchanged, and to replace—until the transaction is aborted—references to these
fields and array elements by references to their copies holding the new value.
Note that, if an object field is referenced to which no new value has been assigned
(and for which therefore no copy has been initialised), the original reference is
used.

Making this work in practice, requires changing the assignment rule for
the cases where a transaction is in progress and is expected to abort (i.e.
where the TRabort: marker is present). Also the rules for update evaluation
change a bit, which change the semantics of an update as well, see description
of the rule below. The following is the assignment rule for the [[·]] modality
with the TRabort: tag present. The corresponding rules for 〈·〉 and [·] are the
same:

Γ ` U{loc′ := expr ′}[[TRabort:πω]]φ
Γ ` U [[TRabort:π loc = expr; ω]]φ

(R12)

As usual expr has to be a logical term. The contents of all objects and arrays
are persistent, so all the subexpressions such as obj .a1.arr [i].a2 . . . in expr are
replaced by obj .a ′

1.arr
′[i ′].a ′

2 . . . in expr ′ (the prime denotes the copy of a ref-
erence). The first reference obj or arr (as in arr [i].a) in expr is not primed,
since it is either a local variable, which is not persistent, or the this refer-
ence, which is not assignable, or a static class reference, like SomeClass, which
also can be viewed as not assignable. All subexpressions that are local vari-
ables are left unchanged in expr ′. The expression loc on the left side of the
assignment is changed into loc′ in the same way as all the subexpressions in
expr .

As mentioned, the semantics of an update has to be changed to take care of
the cases when a copy of an object’s field has not been initialised. In the new
semantics if the value of obj .a ′ or arr [i ′] is referred to in an update, but it’s not
known (i.e. there was no such value assigned in the preceding updates) then it
is considered to be equal to obj .a or arr [i], respectively.

The assignments to the copies are not visible outside the transaction, where
the original values are used again—the effect of a roll-back is accomplished.
Each separate transaction has to have its own copies of fields or array contents,
so the second encountered transaction can, for example, use ′′, the third one ′′′,
etc.

One more thing that we have to handle here is the case when the programmer
explicitly defines an array to be transient (the above rule assumes that it was
not the case). It is not possible to know beforehand which arrays are transient
and which are not, since they are defined to be transient by reference and not
by name. This problem can be treated by adding an extra field to each array
(only in the rules) indicating whether the given array is transient or persistent
(rules for initialising arrays can set this field). Then for each occurrence of array
reference arr in loc and expr in rule (R12) we can split the proof into two cases,

52 Bernhard Beckert and Wojciech Mostowski

following the schema:

Γ , U(o.arr ′.trans .= true) ` U{o.arr ′[i] := expr ′}[[TRabort:πω]]φ
Γ , U(o.arr ′.trans .= false) ` U{o.arr ′[i ′] := expr ′}[[TRabort:πω]]φ

Γ ` U [[TRabort:π o.arr[i] = expr; ω]]φ
(R13)

The remaining rules for [[TRabort: ·]] (i.e. for other programming constructs)
are the same as for [·], and the remaining rules for [TRabort: ·] and 〈TRabort: ·〉 are
the same as if there was no transaction marker.

5 Examples

In the following, we show two examples of proofs using the above rules. The first
example shows how the [[·]] assignment and while rules are used, the second ex-
ample shows the transactions rules in action. The formula we are trying to prove
in the second example is deliberately not provable and shows the importance of
the transaction mechanism when it comes to “throughout” properties.

The proofs presented here may look like a tedious work, but it should not be
hard for the user—most of the steps can be done automatically, in fact the only
place where user interaction is required is giving the loop invariant. The KeY
system provides necessary mechanisms to perform proof steps automatically
whenever possible.

Example 1. Consider the following program p:

x = 3;

while (x < 10) {

if(x == 2) x = 1;

else x++;

}

We show that throughout the execution of this program, the strong invariant
x ≥ 2 holds, i.e. we prove the formula x ≥ 2 → [[p]]x ≥ 2.

Proof. We start the proof with the sequent

x ≥ 2 ` [[x = 3; . . .]]x ≥ 2 (1)

Applying the assignment rule (R3) to (1) produces two proof obligations:

x ≥ 2 ` x ≥ 2 (2)
x ≥ 2 ` {x := 3}[[while . . .]]x ≥ 2 (3)

Sequent (2) is valid. Applying the while rule (R4) to (3) with x ≥ 3 as the loop
invariant Inv gives us the three proof obligations below. Note that here it is
necessary to use x ≥ 3 as the invariant. Using x ≥ 2 (φ) would not be enough,

A Program Logic for Handling JAVACARD’s Transaction Mechanism 53

because the statement x = 1 inside the if statement could not be discarded
and x would be assigned 1, which would break the x ≥ 2 property.

x ≥ 2 ` {x := 3}x ≥ 3 (4)
x ≥ 3 ` [[if(x<10)λ{β}]]x ≥ 2 (5)

x ≥ 3 ` 〈α〉true, [if(x<10)λ{β}]x ≥ 3 (6)

where:
α ≡ if(x < 10) { . . . β; abort; . . . }

β ≡ if(x == 2) x = 1; else x++;

λ ≡ lcont : lbreak :

Reducing (4) results in x ≥ 2 ` 3 ≥ 3 which is valid. In the program α, abort
will be reached (for x < 10) after some proof steps that we do not show here
due to space restrictions. Since abort is a non-terminating program formula
〈abort;〉φ is always false. Thus (6) can be reduced to:

x ≥ 3, x < 10 ` [if(x<10)λ{β}]x ≥ 3 (7)

We are left with (5) and (7) to prove. Applying the if rule to (5) gives two
proof obligations:

x ≥ 3, x < 10 ` [[λ{β}]]x ≥ 2 (8)
x ≥ 3, x ≥ 10 ` [[]]x ≥ 2 (9)

Sequent (9) is reduced to x ≥ 3, x ≥ 10 ` x ≥ 2, which is valid. After
simplifying and applying the if rule to (8) we get:

x ≥ 3, x < 10, x .= 2 ` [[x = 1;]]x ≥ 2 (10)
x ≥ 3, x < 10, ¬x .= 2 ` [[x = x + 1;]]x ≥ 2 (11)

Sequent (10) is valid by contradiction in the descendent. Applying the assign-
ment rule to (11) gives two proof obligations:

x ≥ 3, x < 10, ¬x .= 2 ` x ≥ 2 (12)
x ≥ 3, x < 10, ¬x .= 2 ` {x := x + 1}[[]]x ≥ 2 (13)

Sequent (12) is valid. Sequent (13) is reduced to:

x ≥ 3, x < 10, ¬x .= 2 ` x + 1 ≥ 2 (14)

Sequent (14) is valid. We can go back to (7) and apply the if rule yielding two
proof obligations:

x ≥ 3, x < 10, x < 10 ` [λ{β}]x ≥ 3 (15)
x ≥ 3, x ≥ 10, x < 10 ` []x ≥ 3 (16)

54 Bernhard Beckert and Wojciech Mostowski

(2)

(4)

(10)

(12)

(14)

(13)

(11)
(R3)

(8)
(R1)

(9)

(5)
(R1)

(17)

(20)

(19)

(18)
(R2)

(15)
(R1)

(16)

(7)

(6)

(3)
(R4)

(1)
(R3)

Figure 1: The proof from Example 1

Sequent (16) is valid by contradiction in the descendent. Applying the if rule
to (15) gives us:

x ≥ 3, x < 10, x .= 2 ` [x = 1;]x ≥ 3 (17)
x ≥ 3, x < 10, ¬x .= 2 ` [x = x + 1;]x ≥ 3 (18)

Again (17) is valid by contradiction in the descendent. Applying the assignment
rule to (18) gives:

x ≥ 3, x < 10, ¬x .= 2 ` {x := x + 1}[]x ≥ 3 (19)

which is reduced to:

x ≥ 3, x < 10, ¬x .= 2 ` x + 1 ≥ 3 (20)

Sequent (20) is valid and thus we have proved the initial formula. Figure 1
shows the proof tree for this example.

Example 2. Now consider the following program p (fields of o are persistent):

bT;

o.x = 60;

o.y = 40;

cT;

t = o.x;

o.x = o.y;

o.y = t;

We try to prove the following formula:

o.x + o.y .= 100 ` [[bT; . . .]]o.x + o.y .= 100 (1)

Note that this formula is not provable.

A Program Logic for Handling JAVACARD’s Transaction Mechanism 55

Proof. We start our proof by applying the begin transaction rule to (1) yield-
ing three proof obligations:

o.x + o.y .= 100 ` o.x + o.y .= 100 (2)
o.x + o.y .= 100 ` [[TRcommit: o.x = 60; . . .]]o.x + o.y .= 100 (3)
o.x + o.y .= 100 ` [[TRabort: o.x = 60; . . .]]o.x + o.y .= 100 (4)

Sequent (2) is obviously valid. Applying the assignment rule to (4) gives:

o.x + o.y .= 100 ` {o.x ′ := 60}[[TRabort: o.y = 40; . . .]]o.x + o.y .= 100 (5)

Notice that since we are inside a transaction the assignment rule does not
branch. Again the assignment rule to (5) gives:

o.x + o.y .= 100 `
{o.x ′ := 60}{o.y ′ := 40}[[TRabort: cT; . . .]]o.x + o.y .= 100 (6)

Applying the exit transaction rule (R9) (transaction commits unexpectedly) to
(6) proves (6) to be valid. Applying the assignment rule to (3) gives:

o.x + o.y .= 100 ` {o.x := 60}[[TRcommit: o.y = 40; . . .]]o.x + o.y .= 100 (7)

Again the assignment rule to (7) gives:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}[[TRcommit: cT; . . .]]o.x + o.y .= 100 (8)

Applying the exit transaction rule to (8) gives:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}[[t = o.x; . . .]]o.x + o.y .= 100 (9)

Applying the assignment rule to (9) gives two proof obligations:

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}o.x + o.y .= 100 (10)
o.x + o.y .= 100 `

{o.x := 60}{o.y := 40}{t := o.x}[[o.x = o.y; . . .]]o.x + o.y .= 100 (11)

Sequent (10) is reduced to:

o.x + o.y .= 100 ` 60 + 40 .= 100 (12)

which is valid. Applying the assignment rule to (11) gives two proof obligations:

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}{t := o.x}o.x + o.y .= 100 (13)
o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}

{t := o.x}{o.x := o.y}[[o.y = t; . . .]]o.x + o.y .= 100 (14)

56 Bernhard Beckert and Wojciech Mostowski

(2)

(6)
(R9)

(5)
(R11)

(4)
(R11)

(12)

(10)

(15)

(13)

(18)

(16) (17)

(14)
(R3)

(11)
(R3)

(9)
(R3)

(8)
(R7)

(7)
(R12)

(3)
(R12)

(1)
(R5)

Figure 2: The proof from Example 2

Sequent (13) is reduced to:

o.x + o.y .= 100 ` 60 + 40 .= 100 (15)

which is valid. Applying the assignment rule to (14) gives again two proof
obligations:

o.x + o.y .= 100 `
{o.x := 60}{o.y := 40}{t := o.x}{o.x := o.y}o.x + o.y .= 100 (16)

o.x + o.y .= 100 ` {o.x := 60}{o.y := 40}
{t := o.x}{o.x := o.y}{o.y := t}[[]]o.x + o.y .= 100 (17)

Sequent (16) is reduced to:

o.x + o.y .= 100 ` 40 + 40 .= 100 (18)

Sequent (18) is not provable. Inspecting our program closely shows that indeed
both o.x and o.y are equal to 40 at some point (after line 6 is executed) and
their sum is 80, which violates the property we wanted to prove. Figure 2 shows
the proof tree for this example with two open proof goals.

6 Conclusions and Future Work

We introduced the “throughout” modality (and, thus, strong invariants) to JAVA

CARD Dynamic Logic and presented the necessary sequent calculus rules to
handle this modality and conditional assignments in JAVA CARD transactions.
Introduction of this modality was a manageable task and the set of presented
rules is quite easy to use in theorem proving as shown in the examples. Our
future plan is to implement our rules in the KeY prover and then try our calculus
with “real” examples.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The

A Program Logic for Handling JAVACARD’s Transaction Mechanism 57

KeY system: Integrating object-oriented design and formal methods. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental Approaches
to Software Engineering. 5th International Conference, FASE 2002 Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2002 Grenoble, France, April 2002, Proceedings, volume 2306
of LNCS, pages 327–330. Springer, 2002.

[2] Bernhard Beckert. A dynamic logic for the formal verification of JAVA

CARD programs. In I. Attali and T. Jensen, editors, JAVA on Smart Cards:
Programming and Security. Revised Papers, JAVACARD 2000, International
Workshop, Cannes, France, LNCS 2041, pages 6–24. Springer, 2001.

[3] Bernhard Beckert and Bettina Sasse. Handling JAVA’s abrupt termina-
tion in a sequent calculus for Dynamic Logic. In B. Beckert, R. France,
R. Hähnle, and B. Jacobs, editors, Proceedings, IJCAR Workshop on Pre-
cise Modelling and Deduction for Object-oriented Software Development,
Siena, Italy, pages 5–14. Technical Report DII 07/01, Dipartimento di In-
gegneria dell’Informazione, Università degli Studi di Siena, 2001.

[4] Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order
dynamic logic with trace modalities. In R. Gorè, A. Leitsch, and T. Nip-
kow, editors, Proceedings, International Joint Conference on Automated
Reasoning, Siena, Italy, LNCS 2083, pages 626–641. Springer, 2001.

[5] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens. Enriching
OCL using observational mu-calculus. In Ralf-Detlef Kutsche and Herbert
Weber, editors, Fundamental Approaches to Software Engineering, 5th In-
ternational Conference, FASE 2002, held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2002, Grenoble,
France, April 8-12, 2002, Proceedings, volume 2306 of LNCS, pages 203–
217. Springer, 2002.

[6] Zhiqun Chen. JAVACARD Technology for Smart Cards: Architecture and
Programmer’s Guide. JAVA Series. Addison-Wesley, June 2000.

[7] David Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic.
Reidel, 1984.

[8] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press,
2000.

[9] KeY project homepage. http://i12www.ira.uka.de/~projekt/.

[10] Dexter Kozen and Jerzy Tiuryn. Logic of programs. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, chapter 14, pages 89–
133. Elsevier, 1990.

58 Bernhard Beckert and Wojciech Mostowski

[11] Wojciech Mostowski. Rigorous development of JAVACARD applica-
tions. In T. Clarke, A. Evans, and K. Lano, editors, Proc.
Fourth Workshop on Rigorous Object-Oriented Methods, London, 2002.
http://www.cs.chalmers.se/~woj/papers/room2002.ps.gz.

[12] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceed-
ings, 18th Annual IEEE Symposium on Foundation of Computer Science,
1977.

[13] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVACARD 2.2 Application
Programming Interface, September 2002.

[14] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVACARD 2.2 Runtime
Environment Specification, September 2002.

[15] Sun Microsystems, Inc., Palo Alto/CA, USA. JAVACARD 2.2 Virtual Ma-
chine Specification, September 2002.

[16] K. Trentelman and M. Huisman. Extending JML specifications with tem-
poral logic. In Algebraic Methodology And Software Technology (AMAST
’02), volume 2422 of LNCS, pages 334–348. Springer-Verlag, 2002.

JAVA CARD Tools for Together Control Center

Wojciech Mostowski

Abstract

This is a description of the JAVACARD Tools package for Together
Control Center. The package supports the development of JAVACARD

applets (writing, compiling, installing, testing, etc.) inside the Together
Control Center CASE tool.

1 Introduction

JAVA CARD technology [2] provides means to program Smart Cards using a sub-
set of the JAVA language. Nowadays there is a great variety of different JAVA

CARD devices/platforms available on the market. Although they all have to
conform to the JAVA CARD specification, they usually differ slightly from each
other. It’s very common that each JAVA CARD device producer provides its own
JAVA CARD development environment (it can be a complete Integrated Devel-
opment Environment or just a set of tools/scripts/compilers). None of those
tools provide a uniform, high level, UML supported environment for creating
JAVA CARD applications. Some of those tools are not very user friendly either.
The JAVACARD Tools package tries to solve those inconveniences. It is an ex-
tension of a commercial CASE tool to provide support for different JAVA CARD

devices/platforms. The main goal is to provide a push-button technology inside
the CASE tool that makes JAVACARD development easy and uniform for dif-
ferent kinds of JAVA CARD devices and overcome vendor specific Graphical User
Interfaces at the same time. The CASE tool in question is Together Control
Center (later referred to as TogetherCC) from TogetherSoft [8]. There are two
reasons for this choice. First of all TogetherCC is a state-of-the-art CASE tool
with excellent UML support and open architecture, which makes writing exten-
sions (in JAVA) an easy task. Second TogetherCC is the CASE tool used (as
a base) in the KeY system. The KeY project [1, 5] aims at integrating object-
oriented design with formal methods. The target language for the KeY project
is JAVA CARD due to its relative simplicity. So JAVA CARD Tools can be seen as
an extra support for the KeY system.

In Section 2 we describe the two JAVA CARD platforms that are currently
supported by JAVA CARD Tools in detail. Section 3 presents the capabilities of
JAVACARD Tools and describes an example usage. Section 4 gives some of the
implementation details, Section 5 gives some directions for future extensions and

59

60 Wojciech Mostowski

finally Section 6 gives some pointers to the JAVACARD Tools documentation and
download web site.

2 JAVA CARD Platforms Supported

Currently there are two JAVA CARD platforms/kits supported by JAVA CARD

Tools, however, extending it to support other platforms is possible and the
JAVA CARD Tools architecture makes writing extensions a relatively easy task.
In the following subsections we describe the supported platforms in more detail.

2.1 Sun JAVA CARD Development Kit

Sun JAVACARD Development Kit (jcdk in short) is a reference implementation
of the JAVACARD development kit and tools. On its own the kit does not operate
on any real JAVACARD devices, but such a device can be simulated or emulated
by the kit tools. The package includes:

• Class file verifier and converter (converter tool), which makes sure that a
given JAVA CARD applet complies to JAVA CARD language restrictions and
creates a .cap file suitable for downloading to a JAVA CARD device.

• jcwde tool (JAVACARD Workstation Development Environment), which is
a simple JAVA CARD simulator (e.g. it does not allow saving the state of a
smart card between subsequent runs).

• cref tool (C reference implementation of a JAVACARD environment). This
tool serves as a fully operational JAVACARD emulator. It operates on JAVA

CARD EEPROM images and allows saving a smart card’s state after each
session in form of such an EEPROM image.

• apdutool, which is used to send Application Protocol Data Units to a
simulated/emulated JAVA CARD. APDUs are the only means of communi-
cation between a smart card and the host application/system.

2.2 Dallas Semiconductor JAVA Powered iButtons

Dallas Semiconductor JAVA Powered iButton [4] is a JAVACARD device embed-
ded in a small button (buttons are more durable than normal smart cards).
iButtons implement JAVA CARD API version 2.0. A development environment
for iButtons (iB-IDE) is provided free of charge and can be downloaded from
the web [3]. iB-IDE provides the following tools and functionality:

• an integrated development environment for creating both JAVA CARD ap-
plets and host applications. Skeleton code can be generated for both with
the help of a project wizard.

JAVA CARD Tools for Together Control Center 61

• an APDU sender, which provides low level access to iButtons: download-
ing and removing applets from iButtons, changing iButton settings (e.g.
iButton password), sending arbitrary APDU packets to iButton, etc.

• iButton emulator, which can be used for testing applets before they are
downloaded to the real iButton.

iB-IDE is built on top of low level libraries with well documented API, which
makes it possible and relatively easy to reuse the libraries and build a new set
of tools to operate on iButtons.

3 Support for JAVA CARD Development

JAVA CARD Tools is a uniform front-end to the tools and libraries described
above. Since the tool set is embedded in TogetherCC it is possible to use the full
support of the CASE tool and operate with JAVA CARD devices and emulators
at the same time.

The support for JAVACARD can be divided into two main parts:

• JAVACARD patterns (code skeletons),

• user friendly, easily accessible commands and tools to test applets by
means of an APDU sender, which is used to “talk to” JAVA CARD de-
vices (either emulated/simulated or real). Those commands also include
helper commands to prepare and download applets to JAVACARD devices.

3.1 JAVA CARD Patterns

There are two patterns available at the moment, namely JAVACARD Applet and
JAVACARD Shareable Interface. The latter is only available when JAVA CARD

API version 2.1 or higher is used (i.e. it’s not applicable when iButtons are
used).

As an example, Figure 1 shows the dialog of the JAVACARD Applet pattern.
After applying this pattern to the project the skeleton code for a JAVA CARD

applet is created as well as some files necessary for the development kit used (in
this case Sun jcdk). The skeleton applet code generated by the pattern looks as
follows:

/* Generated by Together */

package testapplet;

import javacard.framework.*;

public class JCApplet1 extends Applet {

protected JCApplet1(){

// Write init code here

register();

}

62 Wojciech Mostowski

Figure 1: JAVACARD Applet pattern

/**

* @param bArray array with initialisation data

* @param bOffset offset into this array

* @param bLength length of the data

*/

public static void install(byte[] bArray,

short bOffset, byte bLength){

new JCApplet1();

}

/**

* @param apdu the incoming apdu packet to process

*/

public void process(APDU apdu){

byte buffer[] = apdu.getBuffer();

if ((buffer[ISO7816.OFFSET_CLA] == ISO7816.CLA_ISO7816) &&

(buffer[ISO7816.OFFSET_INS] == ISO7816.INS_SELECT)) {

// that was the SELECT APDU

}

}

}

The JAVACARD Shareable Interface pattern simply creates an empty JAVA CARD

shareable interface like the following:

JAVA CARD Tools for Together Control Center 63

Sun JAVACARD Development Kit:

Display JAVACARD environment info
Rediscover JAVACARD environment info
Converter tools. . .

Create/update .opt file for this
package/applet

Run converter for this package/applet
Jcwde tools. . .

Create/update jcwde.app file
Start APDU sender

Cref tools. . .
Create virtual card EEPROM image
Start APDU sender

Dallas Semiconductor iButtons:

Display JAVACARD environment info
Rediscover JAVACARD environment info
JiBlet. . .

Build JiBlet for this applet
Applet administration. . .

Get iButton information
Load this applet to iButton
List applets installed on iButton
Remove this applet from iButton
Remove applet from iButton by name
Master erase iButton
Set new password for iButton

APDU sender. . .
Start APDU sender for this applet
Start APDU sender by name

Figure 2: JAVACARD Tools pop-up menu structure

/* Generated by Together */

package testapplet;

import javacard.framework.*;

public interface MyInterface extends Shareable {

}

3.2 Installing and Testing Applets

The remaining JAVA CARD Tools functionality is accessed through TogetherCC’s
class diagram context (pop-up) menu (JAVACARD tools. . . menu group). Fig-
ure 2 shows the full structure of this menu for both Sun JAVA CARD Develop-
ment Kit and Dallas Semiconductor iButtons. Two menu commands are al-
ways present regardless of the JAVA CARD kit used, namely Display JAVACARD

environment info and Rediscover JAVACARD environment info. The first one
displays all the necessary information about the JAVACARD kit that is currently
used and the second one reconstructs this information in case the user changed
the kit. In the following we demonstrate how some of the other commands listed
in Figure 2 are used for JAVA CARD applet installation, testing and management.

Preparing the Applet

Suppose a JAVACARD applet is ready for testing at some point. The first thing
that has to be done is applet compilation. The standard TogetherCC tools are
used for that. After that, the compiled .class file(s) need to be converted to
a proper format. In case of Sun’s jcdk that is a .cap file. To create a .cap
file one needs to invoke Run converter for this applet command from the JAVA

CARD Tools pop-up menu. The messages from the converter are displayed in
TogetherCC’s message windows with ‘jump to error location’ feature. In the

64 Wojciech Mostowski

example shown in Figure 3 a JAVA CARD applet uses a forbidden class String.
By clicking on a message the source of the error is displayed in the editor window.

When JAVA Powered iButton is used then the JiBlet file (.jib) needs to be
built by invoking Build JiBlet for this applet command from JAVA CARD Tools
menu. It works almost in the same way as the converter tool.

Figure 3: The converter tool

Testing Applets with Sun Jcdk Tools

After a .cap file for an applet is created, we can create a card’s EEPROM im-
age with that applet and run JAVACARD emulator on the EEPROM image. To
create an EEPROM image the Create virtual card EEPROM image command
has to be invoked from the Cref tools submenu. If the applet uses some ad-
ditional libraries, which are not part of the current package the user is asked
whether those libraries should be included in the card’s EEPROM image (that’s
usually the case), see Figure 4. Then an appropriate script is invoked and the
EEPROM image is created with all the necessary messages displayed in Togeth-
erCC’s message window.

After the EEPROM image is created we can start an APDU sender for
an emulated card. This is done by invoking Cref tools/Start APDU sender
command. A window like the one in Figure 5 is displayed.

By pressing the ‘Power up’ button the cref emulator is started up. Then an
applet can be selected on a virtual card by pressing the ‘Select applet’ button.
Then any APDU packet can be constructed and sent to the emulator. The
results will be displayed in the response panel. After pressing ‘Power down’ the
current EEPROM image of the emulated card is saved, so that it can be used
again for further testing. Pressing ‘Exit’ closes the APDU sender window (and
also makes sure that the EEPROM image is saved).

JAVA CARD Tools for Together Control Center 65

Figure 4: Creating a card EEPROM image

Another option is to test the applet using the jcwde card simulator. It
works in a similar way to cref except that the EEPROM image is not used and
therefore does not have to be created.

Testing Applets on iButtons

Once a JiBlet file is created for an applet, it can be downloaded to the iButton.
This is done by invoking Load this applet to iButton command from the Applet
administration submenu. If there is more than one iButton attached to the
computer the user will be asked to choose one for downloading the applet.
After successful download an APDU sender can be started to communicate
with the iButton. This is done by invoking Start APDU sender for this applet
command. exactly the same window as described earlier pops up (see Figure 6).
Again ‘Power up’ button should be pressed to initialise the iButton, then the
given applet can be selected by pressing ‘Select applet’ and then the user can
start sending arbitrary APDUs to the applet and watch the responses.

In the current version of JAVACARD Tools there is no possibility to operate
on an emulated iButton, only real iButtons. This is due to the lack of API
documentation for the iButton emulator library.

Other iButton commands. There are a number of other, very useful com-
mands in the Applet administration submenu for iButtons. They allow the
following things:

• listing all the applets installed on an iButton,

• removing applets from iButtons,

• getting full iButton device information (ID string, firmware version, free
memory, etc.),

• master erasing an iButton,

• changing the access password for an iButton.

66 Wojciech Mostowski

Figure 5: APDU sender window running cref emulator

Figure 6: APDU sender window for an iButton

JAVA CARD Tools for Together Control Center 67

4 A Few Words About the Implementation

As already mentioned JAVA CARD Tools is just a front-end to a set of tools and
libraries. As TogetherCC provides an open JAVA API, writing plug-ins and ex-
tensions is a relatively simple task—most of the internals of TogetherCC are
available to the programmer. JAVA CARD Tools provides their support by ex-
tending TogetherCC’s class diagram pop-up menu and adding new patterns to
the TogetherCC pattern collection. To interface the tool set with Sun JAVA

CARD Development Kit, processes running required tools (apdutool, cref, . . .)
are started inside TogetherCC and the messages are passed to and from ap-
propriate windows (TogetherCC message window, APDU sender window, etc.).
The iButton support and communication is provided by the JiBlet JAVA library
(JiB.jar) and iButton 1-Wire JAVA library (OneWireAPI.jar). Operating and
communicating with iButtons is implemented by a few simple calls to those
libraries. Both of those libraries are provided with iButton Integrated Develop-
ment Environment free of charge.

JAVACARD Tools package relies on TogetherCC’s API, however there are no
obstacles to make the package work with another CASE tool as long as the tool
provides the necessary functionality and API for JAVACARD Tools to function
properly (e.g. access to a project’s class path, access to the tool’s editor, etc.).
Also, as mentioned earlier, the JAVA CARD Tools package is easily extensible
to support other JAVA CARD development kits and devices. For example, since
most of the APDU sender functionality is independent of the device used, to
enable sending APDUs to a JAVA CARD device with APDU sender it is basi-
cally enough to write a JAVA class that will communicate with the device and
then just plug it in to the APDU sender class through a very simple inter-
face.

5 Possible Extensions

One of the things that should be considered as a future extension is a generic
support for any JAVA CARD platform that implements Open Card API [7]. The
menu structure could be improved by abstracting the common commands for
different development kits (e.g. Prepare the applet for download). Such menu
abstraction would make the menus more uniform, independent of the actual
JAVACARD platform and easier to use for unexperienced users. On the other
hand, however, experienced users familiar with a given development kit may
actually prefer the concrete version of the menu to have more control over the
actual tools they invoke with menu commands.

Furthermore some small extensions are possible, like having a set of an ap-
propriately formed APDUs for all commands predefined in an applet to choose
from in APDU sender window, etc. Also some more useful JAVACARD patterns
and code skeletons can be added to the pattern collection.

68 Wojciech Mostowski

6 Further Information

A detailed User Guide and Installation Guide in HTML format can be found in
JAVA CARD Tools package as well as on the package web site [6]. The package
itself (currently version 2.0—jctools-2.0.zip) can be downloaded from this
page too.

References

[1] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, and Peter H. Schmitt. The
KeY system: Integrating object-oriented design and formal methods. In
Ralf-Detlef Kutsche and Herbert Weber, editors, Fundamental Approaches
to Software Engineering. 5th International Conference, FASE 2002 Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2002 Grenoble, France, April 2002, Proceedings, volume 2306 of
LNCS, pages 327–330. Springer, 2002.

[2] Zhiqun Chen. JAVACARD Technology for Smart Cards: Architecture and
Programmer’s Guide. JAVA Series. Addison-Wesley, June 2000.

[3] iB-IDE homepage. http://www.ibutton.com/iB-IDE/.

[4] iButton homepage. http://www.ibutton.com/.

[5] KeY project homepage. http://i12www.ira.uka.de/~projekt/.

[6] Wojciech Mostowski. JAVA CARD Tools for Together Control Center web-
page. http://www.cs.chalmers.se/~woj/javacard/.

[7] Open Card homepage. http://www.opencard.org/.

[8] TogetherSoft homepage. http://www.togethersoft.com/.

